Stopped-Pion Neutrino Sources: Physics Capabilities and Needs

Kate Scholberg, Duke University BNL, April 2013

Outline

- Stopped pion (DAR) neutrinos
- Physics with Stopped Pion Neutrinos Supernova-relevant cross-sections Coherent elastic vA scattering Sterile neutrino oscillations
- Needs and desirables for sources

Stopped-Pion (DAR) Neutrinos

Typical flux: ~0.13 per flavor per proton at the SNS

Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper

A. Bolozdynya, F. Cavanna, Y. Efremenko, G. T. Garvey, V. Gudkov,
A. Hatzikoutelis, R. Hix, J. M. Link, W. C. Louis,
D. Markoff, G. B. Mills, K. Patton, K. Scholberg, R. G. Van de Water,
C. Virtue, D. H. White, J. Yoo

Contents

5 Summary

1	Executive Summary						
2	The SNS as a Neutrino Source						
3	Physics Motivations						
	3.1	Light Sterile Neutrinos and Neutrino Oscillations	5				
	3.2	Measurements of Neutrino Interactions	7				
		3.2.1 Charged and Neutral Current Cross Sections	7				
		3.2.2 Coherent Elastic Neutrino-Nucleus Scattering	21				
	3.3	Hidden Sector Physics	28				
4	Exp	erimental Opportunities	29				
4.1 Sterile Neutrino Oscillation Searches: OscSNS							
4.2 CC and Inelastic NC Cross Section Measurement Experiments							
		4.2.1 NuSNS: A Multi-Target Facility	34				
		4.2.2 Argon Cross Section Measurement Experiments	37				
		4.2.3 Lead Cross Section Measurement Experiments	39				
	4.3	Experiments to Measure Coherent Elastic νA Scattering	39				
		4.3.1 Experiments for Coherent Scattering on Argon or Neon	39				
		4.3.2 Experiments for Coherent Scattering on Xenon	42				
	4.4 Experiments for Hidden Sector Measurements						

Many diverse opportunities... I will cover the highlights

arXiv:1211.5199

47

Neutrinos from core collapse

When a star's core collapses, ~99% of the gravitational binding energy of the proto-nstar goes into v's of *all flavors* with ~tens-of-MeV energies

(Energy *can* escape via v's)

Mostly $v - \overline{v}$ pairs from proto-nstar cooling

Timescale: *prompt* after core collapse, overall ∆t~10's of seconds

Supernova explosion

Neutrinos are intimately involved in the post-collapse explosion, which is not fully understood

Supernova nucleosynthesis

Neutrino reactions affect the distribution of SN-produced elements, and may produce rare isotopes

Understanding of neutrino interactions with matter is crucial!

Supernova neutrino detectors, current & future

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running (SK IV)
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(10 ⁶)	Running
Baksan	Scintillator	Russia	0.33	50	Running
Mini- BOONE	Scintillator	USA	0.7	200	Running
HALO	Lead	Canada	0.079	20	Running
Icarus	Liquid argon	Italy	0.6	(60)	(Running)
NOvA	Scintillator	USA	15	3000	Under construction
SNO+	Scintillator	Canada	1	300	Under construction
MicroBooNE	Liquid argon	USA	0.17	17	Under construction

To make the most of a Galactic SN neutrino detection, we need to understand how the neutrinos interact with detector materials

Supernova neutrino spectrum overlaps very nicely with stopped π neutrino spectrum

Study CC and NC interactions with various nuclei, in few to 10's of MeV range

SN-relevant cross sections in this energy range

Of these, only IBD, v-e ES are known at the few % level

So far only ¹²C is the *only* heavy nucleus with v interaction x-sections well (~10%) measured in the tens of MeV regime

Need: oxygen (water), lead, iron, argon...

Highlight: low energy neutrino interactions in argon: relevant for MicroBooNE, LBNE

Charged-current absorption

$$v_{e} + {}^{40}\text{Ar} \rightarrow e^{-} + {}^{40}\text{K}^{*} \qquad \text{Dominant}$$

$$\overline{v}_{e} + {}^{40}\text{Ar} \rightarrow e^{+} + {}^{40}\text{CI}^{*}$$
Neutral-current excitation
$$v_{x} + {}^{40}\text{Ar} \rightarrow v_{x} + {}^{40}\text{Ar}^{*}$$
Elastic scattering
Convector

$$v_{e,x} + e^- \rightarrow v_{e,x} + e^- - Can use for pointing$$

In principle can tag modes with deexcitation gammas (or lack thereof)...

Observability of oscillation features: anecdoctal example

Can we tell the difference between normal and inverted mass hierarchies?

(1 second late time slice, flux from H. Duan w/collective effects)

Fluence at ~50 m from the SNS (~MW) amounts to ~ a supernova a day!

(and effectively more events due to harder spectrum)

Another example: Interactions on lead nuclei

*Note: may need to worry about lead (or iron?) shielding for coherent vA !!

HALO at SNOLAB

SNO ³He counters + 79 tons of Pb: ~40 events @ 10 kpc

Total events per year at the SNS as a function of distance and mass

 $\propto 1/R^2, \propto M$

Scaling for another source: α power; duty factor is critical for background rejection **Examples of detectors that could make these measurements:**

NuSNS Neutrinos at the SNS

CAPTAIN

-liquid target + PMTs - strawtube gas tracker + target sheets - cosmic ray veto

changeable targets

LArTPC

Coherent neutral current neutrino-nucleus elastic scattering

$$v + A \rightarrow v + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils; coherent up to $E_v \sim 50 \text{ MeV}$

- Important in SN processes & detection
- Well-calculable cross-section in SM: SM test, probe of neutrino NSI
 Possible applications (reactor monitoring)

A. Drukier & L. Stodolsky, PRD 30:2295 (1984) Horowitz et al. , PRD 68:023005 (2003) astro-ph/0302071

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2)$$

The cross-section is *large*

But this coherent v A elastic scattering has never been observed...

Why not? Nuclear recoil energy spectrum for 30 MeV v

Most neutrino detectors (water, gas, scintillator) have thresholds of at least ~MeV: so these interactions are hard to see

What do you want to detect CENNS?

High-energy neutrinos, because both cross-section and maximum recoil energy increase with neutrino energy

... but...

... neutrino energy should not be too high ...

The coherent cross-section flattens, but inelastic cross-section increases (eventually start to scatter off *nucleons*) \rightarrow want E_v~ 50 MeV to satisfy $Q \leq \frac{1}{R}$

Detector possibilities: various DM-style strategies

Integrated SNS yield for various targets

What physics could be learned from measuring this?

KS, Phys. Rev D 73 (2006) 033005

Basically, any deviation from SM cross-section is interesting...

- Weak mixing angle
- Non Standard Interactions (NSI) of neutrinos
- Neutrino magnetic moment
- Sterile oscillations
- •
- Nuclear physics

Weak mixing angle

L. M. Krauss, Phys. Lett. B 269 (1991) 407-411

Absolute rate in SM is proportional to $(N - (1 - 4 \sin^2 \theta_W)Z)^2$

Momentum transfer at SNS is Q~ 0.04 GeV/c

If absolute cross-section can be measured to ~10%, Weinberg angle can be known to ~5%

Non-Standard Interactions of Neutrinos

Can improve ~order of magnitude beyond CHARM limits with a first-generation experiment

(for best sensitivity, want multiple targets)

Nuclear physics with coherent elastic scattering If systematics can be reduced to ~ few % level, we could start to explore nuclear form factors

P. S. Amanik and G. C. McLaughlin, J. Phys. G 36:015105, 2009 hep-ph.0707.4191 K. Patton et al., arXiv:1207.0693 NEW

$$\frac{d\sigma}{dT}(E,T) = \frac{G_F^2}{2\pi} M \left[2 - \frac{2T}{E} + \left(\frac{T}{E}\right)^2 - \frac{MT}{E^2} \right] \frac{Q_W^2}{4} F^2(Q^2)$$
Form factor: encodes
information about nucleon
(primarily neutron) distributions

$$\begin{split} F_n(Q^2) &\approx \int \rho_n(r) \left(1 - \frac{Q^2}{3!} r^2 + \frac{Q^4}{5!} r^4 - \frac{Q^6}{7!} r^6 + \cdots \right) r^2 dr \\ &\approx N \left(1 - \frac{Q^2}{3!} \langle R_n^2 \rangle + \frac{Q^4}{5!} \langle R_n^4 \rangle - \frac{Q^6}{7!} \langle R_n^6 \rangle + \cdots \right) \,. \end{split}$$

Fit recoil spectral shape to determine these moments (requires very good energy resolution)

K. Patton et al., arXiv:1207.0693

Example: 3.5 tonnes of Ar at SNS (16 m)

Will require stringent control of uncertainties

Possible phases of stopped-pion coherent vA scattering experiments

Phase	Detector Scale	Physics Goal	Comments
Phase I	Few to few tens of kg	First detection	Precision flux not needed
Phase II	Tens to hundreds of kg	SM test, NSI searches, oscillations	Start to get systematically limited
Phase III	Tonne to multi- tonne	Neutron structure, neutrino magnetic moment,	Control of systematics will be dominant issue; multiple targets useful

Outstanding 'anomalies' in neutrino physics

LSND @ LANL (~30 MeV, 30 m) Excess of $\overline{\nu}_{\rm e}$ interpreted as $\ \overline{\nu}_{\mu} \to \overline{\nu}_{e}$

$\rightarrow \Delta m^2 \sim 1 \text{ eV}^2$: inconsistent with 3 v masses

- unexplained >3 σ excess for E < 475 MeV in neutrinos (inconsistent w/ LSND oscillation)
- no excess for E > 475 MeV in neutrinos (inconsistent w/ LSND oscillation)
- small excess for E < 475 MeV in antineutrinos (~consistent with neutrinos)
- small excess for E > 475 MeV in antineutrinos (consistent w/ LSND)
- for E>200 MeV, both nu and nubar consistent with LSND

????

more data needed

Also: possible deficits of reactor $\overline{\nu}_e$ ('reactor anomaly') and source ν_e ('gallium anomaly')

Sterile neutrinos?? (i.e. no normal weak interactions) Some theoretical motivations for this, both from particle physics & astrophysics. Or some other new physics??

From Bill Louis

OscSNS location: 40-60 m

Look for wiggles along the length of the detector...

OscSNS sensitivity curves

What do you want in a neutrino source for these physics goals? (SN xscns, CENNS, sterile osc)

- ✓ For SN, v spectrum ~matching SN spectrum
- ✓ High flux
- ✓ Well understood spectrum
- ✓ Multiple flavors
- ✓ Pulsed source if possible, for background rejection
- ✓ Ability to get close
- ✓ Practical things: access, control, ...
Low energy neutrino sources

Energy (MeV)

Source	Flux/ v's per s	Flavor	Energy	Background rejection	Access/ control?	Exists?
Reactor	$2e20 s^{-1}$	nuebar	few	Difficult:	Potentially	Yes, many
				low energy	y 05	possionnes
Stopped pion	1e15 s ⁻¹	numu/ nue/ nuebar	0-50 MeV	Good: pulsed beam; high energy	Potentially yes	Yes, several possibilities
Low-energy	$5e11 s^{-1}$	nue or	Tunable	Less: difficult:	Yes	No
		nucoar		CW		
Radioactive	3e16 s ⁻¹	nue (or	~ <few< th=""><th>Difficult: low</th><th>Yes,</th><th>Yes, needs</th></few<>	Difficult: low	Yes,	Yes, needs
sources	per MCi	nuebar)	MeV	energy, CW	portable	R&D
IsoDAR	9e14 s ⁻¹	nuebar	5-12 MeV	Less difficult; higher energy	Yes	No, seems feasible
				CW		

Stopped-Pion Sources Worldwide

Comparison of stopped-pion neutrino sources

Facility	Location	Proton	Power	Bunch	Rate
		Energy	(MW)	Structure	
		(GeV)			
LANSCE	USA (LANL)	0.8	0.8	$600 \ \mu s$	$120 \ Hz$
ISIS	UK (RAL)	0.8	0.16	$2 \times 200 \text{ ns}$	50 Hz
BNB	USA (FNAL)	8	0.032	$1.6 \ \mu s$	5-11 Hz
SNS	USA (ORNL)	1.3	1	700 ns	60 Hz
MLF	Japan (J-PARC)	3	1	2 \times 60-100 ns	$25 \mathrm{~Hz}$
CSNS	China (planned)	1.6	0.1	$<\!500 \text{ ns}$	$25~\mathrm{Hz}$
ESS	Sweden (planned)	1.3	5	$2 \mathrm{ms}$	$17 \mathrm{~Hz}$
DAEδALUS	TBD (planned)	0.7	$\approx 7 \times 1$	100 ms	2 Hz

Want:	- very	high	int	ensi	ty v	's
•••anti	v oi y	- gri			Ly V	

- ~below kaon threshold (low energy protons)
- nearly all decay at rest
- narrow pulses (small duty factor to mitigate bg)

Time structure of the source

Flux \propto power: want bigger! Duty factor: want smaller!

Flux \propto power Duty factor = T*rate (\blacklozenge)

Flux \propto power, high energy protons (non-DAR contamination) Duty factor = T*rate (\blacklozenge)

= max(T, 2.2 μ s)*rate (+ for μ dk ν 's)

Summary

Stopped-pion (DAR) neutrinos: few tens of MeV, well understood spectrum

Many possible physics applications: SN-relevant cross-sections

understanding of SNae interpretation of detected SN neutrinos

CENNS: never before observed

SM test

nuclear physics

Sterile oscillations

could be a priority for neutrino physics if anomalies hold up

Want high power, narrow pulses:

a dedicated source would be very welcome

Extras/Backups

Neutrino interactions in the few-100 MeV range are relevant for neutrinos from various natural sources

Expected neutrino luminosity and average energy vs time

Fischer et al., arXiv:0908.1871: 'Basel' model

What We Can Learn CORE COLLAPSE PHYSICS

- explosion mechanism
- proto nstar cooling, quark matter
- black hole formation
- accretion disks
- nucleosynthesis

from flavor, energy, time structure of burst

NEUTRINO/OTHER PARTICLE PHYSICS

- $V_{\mu} \cdot v$ absolute mass (not competitive)
 - v mixing from spectra: flavor conversion in SN/Earth
 - other v properties: sterile v's, magnetic moment,...
 - axions, extra dimensions, FCNC, ...

+ EARLY ALERT

Current & near-future supernova neutrino detectors

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running (SK IV)
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(10 ⁶)	Running
Baksan	Scintillator	Russia	0.33	50	Running
Mini- BOONE	Scintillator	USA	0.7	200	Running
HALO	Lead	Canada	0.079	20	Running
Icarus	Liquid argon	Italy	0.6	(60)	(Running)
NOvA	Scintillator	USA	15	3000	Under construction
SNO+	Scintillator	Canada	1	300	Under construction
MicroBooNE	Liquid argon	USA	0.17	17	Under construction

plus reactor experiments, DM experiments...

Primary sensitivity is to electron antineutrinos via inverse beta decay $v_e + p \longrightarrow e^+ + n$

Summary of supernova neutrino detectors

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running (SK IV)
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(10 ⁶)	Running
Baksan	Scintillator	Russia	0.33	50	Running
Mini- BooNE	Scintillator	USA	0.7	200	Running
HALO	Lead	Canada	0.079	20	Running
Icarus	Liquid argon	Italy	0.6	(60)	(Running)
NOvA	Scintillator	USA	15	3000	Under construction
SNO+	Scintillator	Canada	1	300	Under construction
MicroBooNE	Liquid argon	USA	0.17	17	Under construction
LBNE LAr	Liquid argon	USA	34	3000	Proposed
(LBNE WC)	Water	USA	200	44,000	Proposed
MEMPHYS	Water	Europe	440	88,000	Proposed
Hyper-K	Water	Japan	540	110,000	Proposed
LENA	Scintillator	Europe	50	15,000	Proposed
GLACIER	Liquid argon	Europe	100	9000	Proposed

plus reactor experiments, DM experiments...

Cross sections for CC electron neutrino absorption

LArTPC Detector Response

Example event display for 30 MeV electron (µBooNE geometry)

- energy resolution?
- vertex resolution?
- directional resolution?
- detection & reconstruction efficiency?

much of this can be addressed at some level with simulation... but simulation needs to be *validated* with data

LArSoft Low-Energy Event studies (Z. Li)

Preliminary studies w/MicroBooNE geometry: looks somewhat worse than lcarus paper

Preliminary

From Flavio Cavanna (SNS workshop, May 2012)

ICARUS T600 TEST ON SURFACE: RUN 785 - EVT 4 (JULY 22ND, 2001)

SNOwGLoBES package contents

- driving script
- data files:
 - cross-section files for O, Ar, C, Pb (+...)
 - smearing and efficiency files for several detector configurations (100kt, LAr, scint, HALO)
 - example flux file(s)
- example plotting scripts
- documentation w/refs

A. Beck, F. Beroz, R. Carr, KS, W. Johnson, A. Moss, D. Reitzner, D. Webber, R. Wendell A. Dighe, H. Duan, A. Friedland, J. Kneller

- Smearing and efficiency files provided are based on:
 - published information (resolutions etc.), reasonable assumptions, simulation output where available
- Users (typically) would provide their own fluxes
- Users could use the packaged detector smearing datafiles, or provide their own http://www.phy.duke.edu/~schol/snowglobes
- Test version available

SNS Flux for SNOwGLoBES

Normalized to 10⁷ per cm² per s per flavor at 20 m

Event rates for argon at the SNS

Consider Non-Standard Interactions (NSI) specific to neutrinos + quarks

Model-independent parameterization

Davidson et al., JHEP 0303:011 (2004) hep-ph/0302093 Barranco et al., JHEP 0512:021 (2005) hep-ph/0508299

$$\mathcal{L}_{\nu H}^{NSI} = -\frac{G_F}{\sqrt{2}} \sum_{\substack{q=u,d\\\alpha,\beta=e,\mu,\tau}} [\bar{\nu}_{\alpha} \gamma^{\mu} (1-\gamma^5) \nu_{\beta}] \times (\varepsilon_{\alpha\beta}^{qL} [\bar{q} \gamma_{\mu} (1-\gamma^5) q] + \varepsilon_{\alpha\beta}^{qR} [\bar{q} \gamma_{\mu} (1+\gamma^5) q])$$

$$NSI \text{ parameters}$$

'Non-Universal': ε_{ee} , $\varepsilon_{\mu\mu}$, $\varepsilon_{\tau\tau}$ Flavor-changing: $\varepsilon_{\alpha\beta}$, where $\alpha \neq \beta$ \Rightarrow focus on poorly-constrained (~unity allowed) $\varepsilon_{ee}^{\ uV}$, $\varepsilon_{ee}^{\ dV}$, $\varepsilon_{\tau e}^{\ uV}$, $\varepsilon_{\tau e}^{\ dV}$

Cross-section for NC coherent scattering including NSI terms

For flavor α , spin zero nucleus:

- NSI affect total cross-section, not differential shape of recoil spectrum
- size of effect depends on N, Z (different for different elements)
- ε's can be negative and parameters can cancel

Combination of targets will help (idea from Yuri Efremenko)

rate
$$\propto (N - (1 - 4\sin^2\theta_W)Z)^2$$

For 1% uncertainty on the *ratio* of rates in two different targets, get:

⁴⁰ Ar/ ²⁰ Ne	2.6%
¹³² Xe/ ²⁰ Ne	1.5%
¹³² Xe/ ⁴⁰ Ar	3.9%

First-generation measurement not competitive: (assuming ~10% systematic error on rate) ... could eventually get to few percent (limited by nuclear physics)

However note it's a unique channel and independent test

J. Barranco, O.G. Miranda, T.I. Rashba, Phys. Rev. D 76: 073008 (2007) hep-ph/0702175: Low energy neutrino experiments sensitivity to physics beyond the Standard Model

Specific NSI models: Z', leptoquark, SUSY with broken R-parity

Neutrino magnetic moment

Prediction of Standard Model: $\mu_{\nu} \sim 10^{-19} \mu_B \left(\frac{m_{\nu}}{1 \text{ eV}} \right)$ but extensions predict larger ones

Current best experimental limits:

Astrophysical limits: (red giant cooling, SN1987A) $\mu_{\nu} < 10^{-10} - 10^{-12} \mu_B$

Magnetic moment effect on the coherent NC scattering rate

P. Vogel & J. Engel, PRD 39 (1989) 3378

SM cross-section:

$$\frac{d\sigma}{dE} = \frac{G^2}{\pi} M \left(1 - \frac{ME}{2k^2} \right) \frac{N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2)$$

Magnetic cross-section:

$$\frac{d\sigma}{dE} = \frac{\pi \alpha^2 \mu_{\nu}^2 Z^2}{m_e^2} \begin{pmatrix} \frac{1 - E/k}{E} + \frac{E}{4k^2} \end{pmatrix} \quad \begin{array}{l} \text{(factor } \mathbf{Z}^2 \\ \text{instead of } \mathbf{Z} \\ \text{for electrons)} \end{pmatrix}$$

Cross-sections for 30 MeV ν

v-nucleus scattering at 30 MeV, Ne

Differential yield at the SNS: muon and electron flavors

Impossible to see excess for μ_v =10⁻¹⁰ for 10 keV thresholdbut several % excess over SM background at ~10 keV for μ_v =6x10⁻¹⁰ μ_B Experimentally hard! But maybe doable

Oscillations to sterile neutrinos w/CENNS (NC is flavor-blind)

A. Anderson et al., PRD86 (2012) 013004, arXiv:1201.3805

Multi-cyclotron sources at different baselines (20 & 40 m) look for deficit and spectral distortion

Summary of physics reach for vA scattering

Basically, any deviation from SM x-scn is interesting...

- Standard Model weak mixing angle:

could measure to ~5% (new channel)

- Non Standard Interactions (NSI) of neutrinos: could significantly improve constraints
- (Neutrino magnetic moment):
 - hard, but conceivable; need low energy sensitivity
- (Sterile oscillations):

hard, but also conceivable

At a level of experimental precision better than that on the nuclear form factors:

- Neutron form factor:

hard but conceivable; need good energy resolution, control of systematics
SM test from CC v interaction on carbon

From NuSNS proposal

Latest MiniBooNE results

 E_v^{QE} >200 MeV

arXiv:1303.2588

Flux calculation: clean spectrum

The SNS as a Stopped-Pion Neutrino Source

In addition to kicking out neutrons, protons on target create copious pions: π⁻ get captured; π⁺ slow and decay at rest

Proton linear accelerator, operation at 1.0 GeV

Accumulator ring, 700 ns pulse width

Energy and power on target from October 2006

Power on Target

R. McGreevy

SNS Second Target Station

