Heavy quark transport offers unique insight into the microscopic picture of the sQGP created in heavy-ion collisions. One central focus of heavy quark program is to determine the heavy quark spatial diffusion coefficient and its momentum and temperature dependence. This requires precise measurements of heavy flavor hadron production and their collective flow over a broad momentum region. In the meantime, heavy quark hadrochemistry, the abundance of various heavy flavor hadrons, provides special sensitivity to the QCD hadronization and also plays an important role for the interpretation of heavy flavor hadron data in order to constrain the heavy quark spatial diffusion coefficient of the sQGP.
In this seminar, I will focus on the recent STAR results of charm hadron D0, D+/-, D*, Ds, Lambda_c production and D0 radial and elliptic flow in heavy-ion collisions utilizing the state-of-the-art silicon pixel detector, the Heavy Flavor Tracker. These data will be compared to measurements from other experiments at RHIC and the LHC as well as various model calculations. I will then discuss how these data will help us better understand the sQGP properties and its hadronization. Finally, I will present a personal view of future heavy quark measurements at RHIC.