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Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth
using lattice independent spin integration. In particular we consider the effect of overlapping spin
resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths
of the spin resonances. These results are benchmarked and compared to two dimensional direct tracking
results for the RHIC e-lens lattice and the standard lattice. Finally we consider the effect of longitudinal
motion via chromatic scans using direct six dimensional lattice tracking.
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I. INTRODUCTION

A major limitation for the luminosity in colliders is due
to head-on beam-beam collisions that lead to emittance
blow-up at sufficiently high intensity. In order to compen-
sate for the beam-beam collision, an electron lens (e-lens)
[1–3] has been installed in each ring of the Relativistic
Heavy Ion Collider (RHIC). To work effectively, however,
this compensation requires (among other conditions) that
the betatron phase advance be an integer multiple of 180°
ingoing from an interaction point (IP) to the e-lens. New
accelerator optics for RHIC, the so-called e-lens lattices,
were developed to provide this needed phase advance for
both the Blue and Yellow rings.
During the 2013 255 GeV polarized proton run, the

new e-lens lattices for both rings were commissioned. The
e-lens lattice required different integer tunes for both rings.
For the Blue ring the integer tunes were changed from
ðQx;QyÞ ¼ ð28; 29Þ to (27,29), and for the Yellow ring,
from (28,29) to (29,30). Compared with the standard lattice
used during run 2012, both the Blue and Yellow ring e-lens
lattices had lower values for the three very strong intrinsic
spin resonances above 100 GeV (see Table I). However, the

neighboring weak resonances were larger than in the run
2012 lattice (see Fig. 1). This we attribute, at least in part,
to the now asymmetric phase advances around the RHIC
rings imposed by the operational requirements of the new
e-lens lattices.
This was the first time the RHIC lattice had run with

significantly altered intrinsic spin resonance structure [4].
The initial expectation was that polarization transmission
through the RHIC ramp would improve, since each
individual intrinsic resonance was well below the depo-
larization threshold in the presence of two snakes. This
threshold has been described in previous theoretical studies
[5–8]; but those studies do not address the potential impact
of overlapping intrinsic resonances.
The results from the 2013 polarized proton run did not,

in fact, show strong evidence of the expected improvement;
indeed, polarization transmission through the RHIC ramp
may have suffered. To understand this effect, we used
the newly-developed code TEASPINK [9] to perform two-
dimensional (2D) and six-dimensional (6D) spin-orbit
tracking on a platform using both message passing interface
(MPI) and graphical processing units (gpu). Because of its

TABLE I. Differences in resonance strength magnitude jwj
between the e-lens and standard lattices for the three strongest
intrinsic spin resonances.

Δðresonance strengthÞ¼ jwnewj − jwoldj
Resonances [Gγ] Blue ring Yellow ring

231þ νy −0.0387 −0.0415
411 − νy −0.06134 −0.0655
393þ νy −0.05347 −0.0347
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gpu capabilities, this code can track both orbit and spin
for tens of thousands of particles at unprecedented speeds.
For this paper, we tracked 50–32,000 particles across the
strongest intrinsic resonances on the RHIC ramp. In addi-
tion, we used another newly-developed code to perform
unitary integration across multiple resonances in a lattice-
independent manner. The results of these studies motivated
us to revisit the theory and carefully analyze the drivers of
depolarization for this system. In particular, we studied the
crossing of one or more intrinsic resonances in the presence
of two snakes whose axis of rotation is orthogonal to each
other (known as orthogonal snakes). While there has been
much effort in past years devoted to understanding polari-
zation behavior in the presence of snakes, several questions
remain either unanswered or unclear in the current literature.
For example, our reading of the literature indicates that

there is a hard limit that gives a machine’s maximum
tolerable resonance strength in terms of the number Ns of
snakes: jwmaxj ≤ Ns=2. This relationship has been derived in
a number of ways. It was first deduced from direct tracking
by Lee and Courant [5] and later supported by analytical
calculations of the so-called “perturbed spin tune.”
However, that work was done before there was a clear
understanding of the importance of the invariant spin field
(ISF) and, especially, of the role the ISF plays in properly
setting up and interpreting spin dynamical tracking studies.
(In this latter context, we remind the reader that measuring
polarization loss in a tracking study requires that one prepare
the initial spins parallel to the local ISF, and then compare

the final spins also against the local ISF.) Later analytical
and numerical work done by Mane [10] showed that the
stable spin direction becomes numerically unstable as the
resonance strength approaches 1 for a two-snake system.
Outside of the narrow integer region of resonance space, the
mechanism for polarization loss was unclear since we were
to understand that the fact that our amplitude dependent spin
tune [10] would remain fixed at 1=2. If this was true then
what was the mechanism for polarization loss? Indeed other
authors pointed to discontinuities in the spin tune as
signatures for polarization loss [11,12].
A secondary question following from the first is how does

this aperture respond as secondary resonances are intro-
duced.What are the thresholds in strength and distance from
the main resonance? What role does phase play? In this
paper we answer some of these questions by employing our
lattice independent spin integration code. First we revisited
the Single Resonance Model (SRM) with snakes. Next we
explored the effect of adding a secondary resonance. We
found strong evidence to support the conjecture that pro-
vided we begin tracking on the stable spin direction and
compare final spin orientation with the final stable spin
direction that there is no mechanism to move the spin vector
away from the stable spin direction (outside of the narrow
band around the integer). Aweaker statement is that, at least
for the orthogonal system of snakes with a single resonance
at an irrational betatron tune, there is no polarization loss
observable for any resonance strength which could fit into
the RHIC aperture less than 50π mmmrad the emittance
necessary for the strongest resonance crossing in the
250 GeV RHIC ramp to equal jwj ¼ 1.
Next we observed that for the strong resonances cross-

ings in the RHIC lattice, the threshold at which a secondary
resonance can impact the polarization aperture is at ≈0.01.
Finally we present a possible approach to greatly expand
the polarization aperture by minimizing the neighboring
resonances.

II. BENCHMARKING LATTICE
INDEPENDENT INTEGRATION

We have developed a code to integrate the 2D spinor
form of the Thomas-BMT (Bargmann, Michel, and
Telegdi) equation [13]:

dΨ
dθ

¼ −
i
2

�
f3 −ξ
ξ� −f3

�
Ψ: ð1Þ

Here ξðθÞ ¼ F1 − iF2 and f3 ¼ ð1þ F3Þ, with

F1 ¼ −ρz00ð1þ GγÞ;

F2 ¼ ð1þGγÞz0 − ρð1þ GÞ
�
z
ρ

�0
;

F3 ¼ −ð1þ GγÞ þ ð1þGγÞρx00: ð2Þ

FIG. 1. Comparison of the Blue (top) and Yellow (bottom)
e-lens intrinsic resonance strengths with standard RHIC lattice
for 393þ νy.
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Further we neglect the ð1þ GγÞρx00 term in F3 since it is
usually much smaller than the (1þGγ) term.
Although the spinor wave function Ψ is similar in form

to the quantum mechanical state function, in this case ~S is a
classical vector. As in the quantum mechanical case,
however, this two component spinor is defined as

Ψ ¼
�
u

d

�
: ð3Þ

Here u and d are complex numbers representing the up and
down components. The components of the spin vector
behave in the usual way with

S1 ¼ Ψ�σ1Ψ ¼ u�dþ ud�

S2 ¼ Ψ�σ2Ψ ¼ −iðu�d − ud�Þ
S3 ¼ Ψ�σ3Ψ ¼ juj2 − jdj2: ð4Þ

Because H ¼ ð~σ · ~nÞ is Hermitian,

j~Sj ¼ juj2 þ jdj2 ¼ Ψ†Ψ; ð5Þ

and the magnitude of the spin vector remains constant. The
normalization condition for the spinor function is chosen to
be Ψ†Ψ ¼ 1.
Using a 4th order Magnus Gaussian quadrature integra-

tor described in [14] we can integrate Eq. (1) for an
arbitrary ξðθÞ. In this code the effect of snakes and rotators
are handled separately and are added into the lattice as thin
spin kicks.
We first consider the polarization response for a single

isolated resonance. This has been much studied in the
past—especially the nonaccelerating case, where an ana-
lytical expression and approximations have been developed

by S. Mane [10]. We revisit this as a cross check for our
new integrator (see Fig. 2) and find good agreement.
We next compare the accelerating case to see if we can

reproduce results similar to direct tracking while crossing
the 393þ νy resonance for the standard lattice.
In Fig. 3 we show spin aperture plots comparing 2D

lattice independent integration against direct 2D tracking.
For these and all future spin aperture plots (unless other-
wise specified), the following apply. The acceleration rate
is held fixed at dγ

dt ¼ 1.24=sec. On the horizontal axis, the
vertical emittance is rescaled to the absolute resonance
strength jwj, based on the strength of the main resonance at
10π mmmrad as calculated by DEPOL [13], a program for
calculating intrinsic and imperfection spin resonances. For
the lattice independent traces, all secondary resonances are
scaled along with the main resonance jwj. On the vertical
axis is plotted the difference between the average final
vertical spin component of a sample of 128 trajectories
distributed uniformly over an initial betatron phase and the
final stable spin direction (jhnyi − hSyij). For the largest
amplitudes considered, we found that 128 trajectories
sufficed to converge to the average polarization obtained
using larger sample sizes (256, 500, and 1000). These

FIG. 2. Plot of stroboscopic average vertical component hnyi
versus the fractional orbital tune [qy] with resonance amplitude of
0.4. Dots represent numerically calculated values using 128
particle average and lines are the analytically calculated values
using S. Mane’s formula [10].

FIG. 3. Comparisons of 2D lattice independent integration
versus direct tracking for simulations of the Standard lattice
crossing the strong 393þ νy resonance. Here the lattice inde-
pendent code used five resonances within �1Gγ of the strongest
resonance. In the case of direct tracking, we set the horizontal and
longitudinal emittances to zero. The two graphs show compar-
isons at qy ¼ 0.671 (top) and qy ¼ 0.675 (bottom).
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aperture plots provide an easy way to compare the spin
preservation for different lattices.
The simple 2D lattice independent code,while differing in

some fine details, reproduces the overall spin transmission
aperture using five resonances within �1Gγ of the central
resonance. We attribute the differences to two possible
sources: (i) the initial or final stroboscopic averages were
not completely converged, or (ii) the vertical precession
due to the quadrupoles, since this model neglects the
ð1þGγÞρx00 term in the Thomas-BMT equation.
Finally, we revisited the SRM to explore the disconti-

nuity at jwj ¼ 1, using the SRM with resonance strengths
0–5 over the whole range of irrational tunes 0–1.0. This
showed that the region of polarization loss near the integer
resonance is very narrow and that above the integer,
polarization transmission is restored. An extract of this
scan is shown in Fig. 4.
One could argue that for a realistic multiparticle

system the effects of this discontinuity at jwj ¼ 1 would
go unobserved and might be considered a numerical
artifact.

III. EFFECT OF OVERLAPPING RESONANCES

Recent theoretical work [15] has shown that the T-BMT
equation can be recast into a Hill’s like equation with a

quasiperiodic kernel. For the case where there is a strong
resonance perturbed by a weaker resonance, the pertur-
bative effect can be understood as parametric resonances.
This paper showed that the Foirsart-Stora formula for
single strong resonance remains valid until the onset of
the parametric resonance region. So our conjecture is
that with snakes we should see the same behavior as the
snake SRM until a parametric resonance is crossed. This
should mean that primary cause of depolarization is due
to the parametric resonances caused by the introduction
of the secondary resonance. The consequence of this is
that while the strength of the main resonance is generally
important when other resonances are present, more
important might be the threshold of where the over-
lapping resonance becomes significant. If we can drive
down these nearby secondary resonances we should be
able to open up the polarization aperture. From the
perspective of lattice symmetry it would seem that with
snakes one would want a highly symmetric lattice with
large but isolated intrinsic resonances which is contrary to
our previous assumptions and what one needs in lattices
without full snakes.

A. Two intrinsic resonances

The introduction of a second intrinsic resonance dra-
matically changes the depolarization threshold and curve
structure. We consider the response to the addition of one
out of the four nearest resonances. There are two types of
intrinsic resonance groupings, the first has an N þ ν for the
primary resonance (as for the strongest resonance 393þ ν)
and the second withN − ν as the primary resonances (as for
the 411 − ν resonance). For the first case we define the
primary resonances K1 ¼ 1þ qy þ n and the four secon-
dary as: 1.K0¼qyþn, 2.K2¼2þqyþn, 3.K3¼2−qyþn,
4. K4 ¼ 3 − qy þ n. Here qy is the fractional part of the
vertical tune and n is an arbitrary integer setting the general
location of the resonance group. From the point of view
of relative distances between the primary resonance (K1)
and the secondaries it yields the following differences:
1. K1−K0¼ 1, 2. K1 − K2 ¼ −1, 3. K1 − K3 ¼ 2qy − 1,
4. K1 − K4 ¼ 2ðqy − 1Þ. This is analogous to the N − ν
resonance grouping where: 1. K1 ¼ 1þ n − qy, 2. K0 ¼
n − qy, 3. K2¼2þn−qy, 4. K3¼nþqy, 5. K4 ¼
n − 1þ qy, giving: 1. K1 − K0 ¼ 1, 2. K1 − K2 ¼ −1,
3. K1 − K3 ¼ 1 − 2qy, 4. K1 − K4 ¼ 2ð1 − qyÞ. This rela-
tive difference is identical to the N þ ν grouping with the
exception of a sign flip for the K1 − K3 and K1 − K4

differences.
Considering the N þ ν grouping first, in Figs. 5–8 we

can see the K4 appears to have most impact across all
phases and the effect of K3 appears negligible across all
phases. Here the phase difference is due to the complex
phase difference between the two resonances (i.e., ϕ1 − ϕ2,
where the resonance strength is given as jwije−iϕi). Later

FIG. 4. Top: Plot of polarization response to a scan of resonance
amplitude jwj for an isolated resonance at a variety of fractional
betatron tunes (qy). Bottom: A blow up of the top plot showing
the width of the depolarization spike to be about ≤ 0.02.
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we will revisit K4 as we try to improve the polarization
aperture for 393þ νy resonance crossing in the standard
lattice. However K0 and K2 both one unit of Gγ away from
the primary resonancesK1 share large swings in impact due
to the relative phase.
As such we also considered a more careful study

of the phase response in Fig. 9 where we can see
polarization response to relative phase between the
strong and weak neighboring intrinsic spin resonance.
From this study we see again verified that K3’s effect
maybe ignored while K4’s effect remains relatively
high and constant. K0 and K2 also oscillate but with
a much larger amplitude, so paying close attention to

the relative phase should be important in minimizing
their impact. We also explored the effect of small tune
changes to the phase response for K0 as can be seen in
Fig. 10. Here we see the locations of the maximum and
minimum appear unchanged but the width of the peaks
are modified.
For the N − ν case we found the same style of response

to relative location and phase. Apparently the change in
sign does not impact the general rules for the response.

B. Intrinsic with single imperfections

The two nearby imperfection spin resonances whose
overlap can lead to a reduction of polarization aperture,

FIG. 6. Polarization aperture plots for K1 with K2 resonance.
Here the fractional tune was qy ¼ 0.675. We used absolute
resonance strength of 0.45 for normalized 10π mmmrad for
K1 and K2 ¼ ð0.01; 0.05; 0.1; 0.2Þ. The x-axis jwj represents the
resonance strength of the primary resonance (K1) with the
secondary (K2) scaled along with it. We considered three relative
phase differences between the primary and secondary resonance
Δϕ ¼ 3π=2 (top), π (middle) and π=2 (bottom).

FIG. 5. Polarization aperture plots for K1 with K0 resonance.
Here the fractional tune was qy ¼ 0.675. We used absolute
resonance strength of 0.45 for normalized 10π mmmrad for
K1 and K0 ¼ ð0.01; 0.05; 0.1; 0.2Þ. The x-axis jwj represents the
resonance strength of the primary resonance (K1) with the
secondary (K0) scaled along with it. We considered three relative
phase differences between the primary and secondary resonance
Δϕ ¼ 3π=2 (top), π (middle) and π=2 (bottom).
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occur at two of the nearest integers which we call Kimp1 ¼
1þ n and Kimp2 ¼ −1þ n (as before n here sets the
location of the resonances group). Their effect on polari-
zation aperture can be seen in Fig. 11.
In Fig. 12 we now study the phase response for each of

the imperfection resonances. Here we see that unlike the
interfering intrinsic resonances, the response appears
relatively insensitive to the phase. However as we saw
before tune does matter.

Generally we see that the effect of both of the imper-
fections grow out from the location of jwj ¼ 1 with Kimp1
having a stronger effect and with a similar threshold at
≈0.01 (ignoring the singular loss at jwj ¼ 1).

C. Intrinsic with coupled intrinsic resonance

As we perform direct lattice tracking with more degrees
of freedom we can try to simulate their behavior using
the 2D lattice independent integration by including
more Fourier components. For the case of horizontal
motion, while we have neglected the ð1þ GγÞρx00 term
for the lattice independent integration, one discovers that
the primary effects of linear betatron coupling is due to the

FIG. 9. Polarization response for particles whose primary
resonance is w ¼ 0.59 and the secondary at w ¼ 0.066. This
simulates the behavior of a particle at 17π whose primary and
secondary strengths at 10π ¼ 0.45, 0.05 respectively. Here we
consider the secondary resonance at K0;2;3;4 with the relative
phase between the primary and secondary resonance scanned
between 0 and 2π. The acceleration rate is the nominal RHIC
ramp rate of dγ=dt ¼ 1.24= sec, and the fractional vertical tune
qy ¼ 0.675.

FIG. 7. Polarization aperture plots for K1 with K3 reso-
nance. Here the tune was νy ¼ 0.675. We used absolute
resonance strength of 0.45 for normalized 10π mmmrad
for K1 and K3 ¼ ð0.01; 0.05; 0.1; 0.2Þ. The x-axis jwj repre-
sents the resonance strength of the primary resonance
(K1) with the secondary (K3) scaled along with it. We
considered three relative phase differences between the
primary and secondary resonance Δϕ ¼ 3π=2. Δϕ ¼ π, π=2
(not shown) did not demonstrate any significant difference
from this plot.

FIG. 8. Polarization aperture plots for K1 with K4 resonance.
Here the tune was νy ¼ 0.675. We used absolute resonance
strength of 0.45 for normalized 10π mmmrad for K1 and
K4 ¼ ð0.01; 0.05; 0.1; 0.2Þ. The x-axis jwj represents the reso-
nance strength of the primary resonance (K1) with the secondary
(K4) scaled along with it. We considered three relative phase
differences between the primary and secondary resonance
Δϕ ¼ π:Δϕ ¼ 3π=2, π=2 (not shown) did not demonstrate
any significant difference from this plot.

FIG. 10. Polarization response for particles whose primary
resonance is w ¼ 0.59 and the secondary at w ¼ 0.066. This
simulates the behavior of a particle at 17π whose primary and
secondary strengths at 10π ¼ 0.45, 0.05 respectively. Here we
consider the K0 resonances with the relative phase between the
primary and secondary resonances scanned between 0 and 2π for
fractional tunes qy ¼ 0.673, 0.675 and 0.679. The acceleration
rate is nominal RHIC ramp rate dγ=dt ¼ 1.24.

RANJBAR, MÉOT, BAI, ABELL, and MEISER PHYS. REV. ACCEL. BEAMS 19, 101002 (2016)

101002-6



projection of the horizontal tune onto the vertical motion.
Thus the bulk of the effect of the addition of horizontal
motion occurs via linear coupling. This effect can be
contained in the ξðθÞ ¼ F1 − iF2 term whose Fourier series
can now include resonance amplitudes due to the horizontal
motion. These resonance amplitudes can be computed
using a modification to the DEPOL algorithm [16]. Thus
we can include the effects of coupling by adding Fourier
resonance terms which correspond to the horizontal beta-
tron tune N � νx.
Previous studies [17] have indicated coupled spin

resonances can occur at 393þ νx at the level of 0.15.
In Fig. 13 we show the results of lattice independent
integration including the effect of interfering coupled
intrinsic spin resonances. We placed this resonance at
K1x ¼ qx þ n relative to the primary at K1 ¼ 1þ qy þ n
(reflecting the integer difference between the vertical and
horizontal tune for RHIC). We discovered that the response
appears insensitive to phase difference, as the results were
fairly similar for phases ¼ π, π=2 and 3π=2 (shown in
Fig. 13). Additionally apart from the narrow spike at the
integer resonance strength the effect of the resonances has
the same threshold ≈0.01 as the other interfering reso-
nances studied so far.

IV. UNDERSTANDING IMPACT OF 6D MOTION

Considering now the impact of longitudinal motion, we
move finally to full 6D dynamics. Within the context of the
lattice independent integration, it is possible to consider the

FIG. 11. Top: Effect of wimp1 ¼ 0.005, 0.01, 0.1, 0.15, 0.2 with
qy ¼ 0.675333 and phase ¼ 180 degrees. Bottom: Effect of
wimp2 ¼ 0.005, 0.01, 0.1, 0.15, 0.2 with qy ¼ 0.675333 and
phase ¼ 0 degrees.

FIG. 13. Polarization aperture plots for K1 with K1x coupled
spin resonance. Here the lattice independent code used 128 initial
trajectories uniformly over the betatron phases at each resonance
strength, the acceleration rate is dγ

dt ¼ 1.24=sec and the fractional
tune qy ¼ 0.675333 and qx ¼ 0.685333. We used absolute
resonance strength of 0.45 for normalized 10π mmmrad for
K1 and K1x ¼ ð0.01; 0.05; 0.1; 0.15; 0.2Þ. The x-axis jwj repre-
sents the resonance strength of the primary resonance (K1) with
the secondary (K1x) scaled along with it.

FIG. 12. Polarization response for particles with interfering
imperfection at þ1 (top) and −1 (bottom). Acceleration rate is
nominal RHIC ramp rate dγ=dt ¼ 1.24. Here the relative phase is
scanned from 0–2π between the primary and imperfection. We
scanned at two different imperfection amplitudes and two differ-
ent fractional tunes.
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effects of longitudinal motion via phase modulation of the
resonances and modulation of Gγ during acceleration.
However we leave this treatment for another paper and
consider only 6D motion in the context of direct tracking
and its relative impact on our profiles. In Fig. 14 we
compare direct tracking results with nonzero emittance in
only the vertical plane to full 6D tracking at various
chromaticities for the standard lattice we used up until

2013, (FY12 lattice). In Fig. 15 we consider 6D tracking for
the Blue and Yellow e-lens lattices at different chromatic-
ities. We observe at these tunes, there are very minor effects
of larger chromaticities. The bulk effect of including
longitudinal dynamics is to smooth out some of the
structure of the profiles observed in 2D tracking, this also
points to a possible explanation for the structure which we
describe in the final section.

FIG. 15. Direct tracking profiles for the standard lattice cross-
ing the 393þ νy resonances. We re-scaled the vertical emittance
to absolute resonance strength jwj, based on the strength of the
main resonance at 10π mmmrad as calculated by DEPOL. We
plot four profiles representing full 6D tracking with 50,400
particles at vertical chromaticities (Cy ¼) of 2,4, and 10. The
fractional tune is for the e-lens Yellow lattice were νy ¼ 0.673
(top), νy ¼ 0.6705, with Cy ¼ 2, 4, 10 (middle) and for the e-lens
Blue lattice νy ¼ 0.678 with Cy ¼ 2, 10 (bottom). In all cases an

acceleration rate of dγ
dt ¼ 1.24=sec was used.

FIG. 14. Direct tracking profiles for the standard lattice cross-
ing the 393þ νy resonances. We rescaled the vertical emittance to
absolute resonance strength jwj, based on the strength of the main
resonance at 10π mmmrad as calculated by DEPOL. Top: We
plot four profiles with the fractional tune νy ¼ 0.671, represent-
ing full 6D tracking with 50,400 particles at vertical chromatic-
ities (Cy ¼) of 2,4, and 10 as well as a 2D direct tracking with
zero emittance for all planes except vertical. Middle: We also plot
using νy ¼ 0.673 with Cy ¼ 2, 10 as well as a 2D direct tracking.
Bottom: Here we plot using νy ¼ 0.680 now only comparing
Cy ¼ 2 against 2D direct tracking. In all cases we use an
acceleration rate of dγ

dt ¼ 1.24=sec.
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V. STUDY OF 393þ νy RESONANCE CROSSING
FOR THE STANDARD RHIC LATTICE

In the section on benchmarking we already consid-
ered this resonance crossing, however now we would
like to study this resonance crossing in more detail since
it represents one of the primary sources of polarization
loss for RHIC 250 GeV ramp and above. Revisiting the
resonances structure surrounding 393þ νy for the stan-
dard lattice we can see (Fig. 16) that our largest
neighbor appears to be the 453 − νy ≈ 423.325 reso-
nance (which is our K4 resonance in the previous
analysis). For this resonance structure we find that we
can explain most of the loss in polarization aperture by
considering only two resonances, the primary K1 and
using K4 as the secondary. This can be seen clearly
in Fig. 17.
Next we scan the strength of K4 (w4) in the five

resonance model (Fig. 18). We can see that if the
resonance strength is reduced to <0.01 we essentially

have an infinite polarization aperture (considering only
intrinsic resonances). This threshold of 0.01 seems to
persist even if the primary resonance increases in
strength. For example in Fig. 19 we have tracked with
the primary resonance jw1j ¼ 0.7 at 10π mmmrad yet
still if jw4j ≤ 0.01 the polarization aperture remains
essentially infinite.

FIG. 18. The simple two resonance model (K1 and K4).
Here we scan the secondary resonance strength of w4 for
the K4 resonance while keeping the primary resonance at
K1 fixed.

FIG. 16. Resonance structure around 393þ νy for the RHIC
standard lattice.

FIG. 17. Comparing a five resonance model with 2D
direct lattice tracking and a K1, K4 resonance model. The
simple two resonance model appears to capture most of
the behavior exhibited in the five resonance and direct lattice
tracking.

FIG. 19. Plots show polarization aperture for different w4

values with w1 ¼ 0.7. The top are scans done with δϕ ¼ π
and the bottom with δϕ ¼ 3π=2. This shows that the threshold of
0.01 for w1 remains regardless if the primary resonance is
increased.
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Finally we consider the impact of tune in the
standard situation with jw4j ¼ 0.04 in Fig. 20 and
contrast that with the lattice where this K4 resonance
is reduced to 0.01 in Fig. 21. In the latter case we see
what RHIC operations have now understood for several
years that running nearer to the 2=3 rds vertical tune
offers improved polarization transmission. However in
the other case when jw4j ¼ 0.01 then polarization
transmission gets worse as it approaches the 2=3 rds
vertical tune.

A. Effect of minimizing K4 resonance
via lattice modifications

Using a modified version of loco [18] accelerator tool-
box for MATLAB we altered the standard lattice to minimize
the 453 − νy resonance leaving all the other resonances
unaffected using a spin response approach with singular
value decomposition (SVD). Changing only the non
focusing quadrupole (qf) and defocusing quadrupole (qd)
families (whose strengths can be individually modified), we
were able to reduce jw4j ≈ 0.01 with relatively minor
changes to the remaining quad strengths (see Fig. 22)

and modest changes to the beta functions (see Fig. 23). The
effect of this change is fairly dramatic as can be seen
in Fig. 24.

VI. CONJECTURE ON THE POLARIZATION
APERTURE STRUCTURE

The results of direct lattice tracking verify the structure
observed in the lattice independent integration. Contrary to
naive expectations polarization loss does not always rise
monotonically with resonance amplitude. There can be dips
and cusps in the polarization loss as a function of resonance
strength. The reason for this may be rooted in the

FIG. 20. Polarization response to tune when jw4j ¼ 0.04.
Shows improvement when tune approaches 2=3 rds.

FIG. 21. Polarization response to tune when jw4j ¼ 0.01.
Shows improvement when tune moves away from 2=3 rds.

FIG. 22. Relative changes to RHIC quadrupoles excluding QF
and QD tune control families required to minimize the 453 − νy
resonance during the 393þ νy resonance crossing.

FIG. 23. Horizontal (X) Beta functions for standard lattice and
453 − νy minimized lattice (top), Vertical (Y) beta functions for
standard lattice and 453 − νy minimized lattice (bottom).

RANJBAR, MÉOT, BAI, ABELL, and MEISER PHYS. REV. ACCEL. BEAMS 19, 101002 (2016)

101002-10



parametric resonance structure of the overlapping reso-
nances. In a recent paper [15] it has been shown that the
Thomas-BMT equation in spinor form (see Eq. (1) can be
recast into a quasiperiodic Hill’s like differential equation,

d2q
dθ2

¼ Ω2ðθÞq; ð6Þ

using the following transformations and definitions:

βðθÞ ¼ −
�
if3ðθÞ þ

ξ0ðθÞ
ξðθÞ

�
;

Ω2ðθÞ ¼ β0ðθÞ
2

þ βðθÞ2
4

−
ξðθÞξðθÞ�

4
;

DðθÞ ¼ 1

2

Z
θ
dτβðτÞ;

qðθÞ ¼ eDðθÞΨþ
I ðθÞ: ð7Þ

Here the approximate kernel Ω2ðθÞ for two overlapping
resonances is expressed as follows:

Ω2ðθÞ ≈Ω2
0ðθÞ þ CrðθÞeiðδθþΔϕÞ þ C−re−iðδθþΔϕÞ

Ω2
0ðθÞ ¼ W2

0 þ C1θ þ C2θ
2

CaðθÞ ¼ jCrðθÞj þ jC−rj: ð8Þ

Here CaðθÞ is the total amplitude for the oscillatory parts of
the kernel, δ ¼ K1 − K2 the difference between the two
resonances and Δϕ the phase difference. When considering
the two resonance system without snakes, as studied in
Ranjbar’s paper, we see that the system behaves as a
single resonance until the onset of the parametric resonance.
Thus we conjecture that the mechanism for polarization
loss (outside of the narrow jwj ¼ 1 band), with orthogonal
snakes must be related to the parametric resonance.
This is because we have shown that the SRM with
orthogonal snakes at irrational tunes are practically resistant

FIG. 24. Direct tracking Polarization aperture scans for
standard lattice and 453 − νy minimized lattice.

FIG. 25. These plots show the evolution of the parametric
resonance area as the primary resonance strength is increased.
Top: primary resonance strength 0.45, Middle: 0.64, Bottom: 0.7.
This type of behavior may explain the dips in polarization loss as
resonance magnitude is increased.

FIG. 26. Area of parametric resonance (in units of jCaj × θ) for
1∶2 (red square), 1∶1 (green triangle) and 3∶2 (black diamond) as
a function of resonance strength, for w1 ¼ 0.45 and w4 ¼ 0.05 at
10π mmmrad. Comparing with polarization aperture for same
resonance combination (blue circles).
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to depolarization and that depolarization can only occur in
the presence of secondary resonance. If we refer to how in
the two resonance case without snakes, the system can
move in and out of a parametric resonance region as the
primary resonance strength is raised while keeping the ratio
of strong to weak resonance constant, we can see a possible
mechanism for a similar behavior in the presences of snakes.
(See Fig. 25.) In Fig. 26–29 we calculate the area of the
parametric resonance enclosed between the intersection of
jCaðθÞj and jΩ2

0ðθÞj. We believe that this area should be
proportional to the total effect of the overlapping resonance.
This is motivated by the defined boundaries of the resonance
tongue given by:

Ω2
0ðθÞ ≈ δ2=4� jCaj=2: ð9Þ

Here we compare it to the structure of the polarization
response for each of the neighboring resonances. We
can see some qualitative similarities in their response,
however the location of the peaks and valleys appear to
be offset. This may be due to a systematic shift in the
parametric resonance region induced by the action of
the snakes.
Clearly this approach cannot explain the slight asym-

metry between K0 and K2 resonance response since the
parametric resonance areas for these two cases seem near
identical. It would seem that snakes might introduce some
symmetry breaking between these two resonances which is
not evident in the simple two resonance model. Also this
model does not include the relative phase which would be
considered as a secondary effect. However it is noteworthy
that the response for the K3 resonance are small for both the
tracking and parametric resonance area as well as provides
a plausible physical mechanism for the dips and structure of
the polarization aperture.

VII. CONCLUSION

We have shown via direct numerical integration of the
T-BMT equation for a single resonance with two orthogo-
nal snakes at an irrational tune, that excluding narrow
discontinuities at integer resonance values, the polarization
transmission aperture is probably infinite, or at least well
beyond any physical aperture. We have explored the critical
role which interference from neighboring spin resonances
can have in reducing the polarization transmission aperture
during acceleration. In particular, we have found that the
strength threshold for this interference appears to lie near a
magnitude of 0.01. Furthermore, we have discovered the
following general principles governing the effect of neigh-
boring resonances on a primary resonance relating to their
relative location jΔj and relative phase: 1. jΔj ¼ j2qy − 1j
can generally be ignored. 2. jΔj ¼ j2ðqy − 1Þj has an
important role in depolarization, and its effect is indepen-
dent of the resonance phase. 3. jΔj ¼ 1 has an important

FIG. 27. Area of parametric resonance (in units of jCaj × θ) for
1∶2 (red square), 1∶1 (green triangle) and 3∶2 (black diamond) as
function of resonance strength, for w1 ¼ 0.45 and w0 ¼ 0.05 at
10π mmmrad. Comparing with polarization aperture for same
resonance combination (blue circles).

FIG. 28. Area of parametric resonance (in units of jCaj × θ) for
1∶2 (red square), 1∶1 (green triangle) and 3∶2 (black diamond) as
a function of resonance strength, for w1 ¼ 0.45 and w3 ¼ 0.05 at
10π mmmrad. Comparing with polarization aperture for same
resonance combination (blue circles).

FIG. 29. Area of parametric resonance (in units of jCaj × θ) for
1∶2 (red square), 1∶1 (green triangle) and 3∶2 (black diamond) as
a function of resonance strength, for w1 ¼ 0.45 and w2 ¼ 0.05 at
10π mmmrad. Comparing with polarization aperture for same
resonance combination (blue circles).
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effect which depends strongly on the phase. In particular,
the effects are minimized when the phase is 0 or 2π and
maximized at π=2 and 3π=2. 4. The effect of interfering
imperfection resonances Kimp1 ¼ nþ 1 and Kimp2 ¼ n − 1

are mostly independent of phase. The effect becomes
significant above a magnitude of 0.01. outside of the
narrow integer band begins also at strength of 0.01.
Their relative importance is a function of their relative
distance to the primary resonance and thus depends on the
location of the fractional tune (closer to 0 or 1). 5. The
effect of an interfering coupled intrinsic spin resonance is
relatively insensitive to phase. It also begins to affect
transmission by a strength of about 0.01.
Using these principles, we devised a lattice to suppress

the K4 spin resonance around the strongest spin resonance
K ¼ 393þ νy for the RHIC 250 GeV acceleration ramp.
This modified lattice has a greatly improved polarization
transmission.
In addition, our analysis suggests that the longitudinal

dynamics modifies or smooths out some of the structure of
the polarization aperture, with chromaticity playing a very
minor role in perturbing the polarization response.
Finally, we have also shown that the polarization trans-

mission aperture is not always a monotonic function of
emittance, and that this fact might be explained by appealing
to the movement in and out of parametric resonance regions.
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