Charm Mixing and CP Violation at LHCb

Paras Naik University of BRISTOL on behalf of the LHCb collaboration

1 May 2013, Brookhaven Forum

Charm at LHCb?

- We are, above all, a B physics experiment...
 - However, the same properties that optimize LHCb for B physics also make it an excellent charm physics experiment.
- We have immense charm samples...
- The charm cross section is ~20 times larger than the b cross section.
 - $\sigma(c\bar{c})_{LHCb} = 1419 \pm 133 \,\mu b$ (Nucl. Phys. B 871 (2013), 1) ($\sigma(\sqrt{s}) = 7 \,\text{TeV}$
 - $\sigma(b\bar{b})_{LHCb} = 75.3 \pm 14.1 \,\mu b$ (Phys. Lett. B 694 (2010), 209)
- In 2011 roughly a trillion cc̄ were produced!
- LHCb can make precision measurements in charm with high sensitivity to New Physics...
 - The only mixing meson with up-type quarks.
 - The big prize: **CP violation** (**CPV**) in charm.

LHCb Experiment: Tracking

- Accurate decay time resolution from our vertex locator (VELO)
- High muon reconstruction efficiency from muon stations
- Good momentum resolution from tracking stations, $\Delta p/p = 0.35\% 0.55\%$

LHCb Experiment: Charged kaon/pion separation

K/π separation provided by <u>Ring Imaging Cherenkov</u> (**RICH**) detectors

• The ability to identify particles at LHCb is critical to many of our analyses.

Charm Trigger and LHCb recorded luminosty

- We have an excellent Trigger for charm decays
- Charm trigger uses 33% (2011) 40% (2012) of our trigger bandwidth
- Ability to trigger on tracks with lower pT
- 1.0 fb⁻¹ at 7 TeV collected by LHCb in 2011
 - Today's Analyses
- 2 fb⁻¹ at 8 TeV collected by LHCb in 2012 (future analyses)
- Instantaneous luminosity delivered to LHCb fixed at $\mathscr{L} = 4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Knowledge of the Neutral Charm System in 2012

• Neutral D mass eigenstates: $D_{1,2}=pID$ + $qI\overline{D}$

- CP-violation (CPV) if $Iq/pI \neq 1$ or CPV phase $\phi \neq 0$
- Standard Model (SM): x, y at most 10⁻², small CPV
- $x = (0.63 \pm 0.20)\%$, $y = (0.75 \pm 0.12)\%$
- $|q/p| = 0.88 \pm 0.18$, $\phi = -10.1^{\circ} \pm 9.5^{\circ}$

Paras Naik, University of Bristol

1 May 2013, Brookhaven Forum

Charm Mixing via $D \rightarrow K\pi$ decays

Flavor Tagging

We can use neutral D mesons from D* decays to tag flavor of the D

D⁰ mixing at LHCb

PRL 110, 101802 (2013) 1.0fb⁻¹ collected during 2011

Paras Naik, University of Bristol

D⁰ mixing at LHCb

PRL 110, 101802 (2013) 1.0fb⁻¹ collected during 2011

Search for direct CPV in charm

Paras Naik, University of Bristol

1 May 2013, Brookhaven Forum

Search for direct CPV in Charm

Time-integrated CP asymmetry defined as:

$$\mathcal{A}_{C\!P}(f) = rac{\Gamma(D o f) - \Gamma(\overline{D} o \overline{f})}{\Gamma(D o f) + \Gamma(\overline{D} o \overline{f})} \, ,$$

SM predictions do not rule out a few 10^{-3}

NP could enhance up to $\mathcal{O}(10^{-2})$

Phys.Rev. D75 (2007) 036008

Analysis techniques

- Magnetic field frequently flipped.
 - Using both 'magnet up' and 'magnet down' data cancels many asymmetries
- Kinematic areas with large detection asymmetries can be removed

ACP from D* decays

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

$$A_{RAW}(f) \simeq A_{CP}(f) + A_D(f) + A_D(\pi_s^+) + A_p(D^{*+})$$

ACP from D* decays

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

$$A_{RAW}(f) \simeq A_{CP}(f) + A_D(f) + A_D(\pi_s^+) + A_p(D^{*+})$$

Taking $A_{RAW}(f) - A_{RAW}(f')$ the production and slow pion detection asymmetries will cancel.

If the effect of $A_D(f) - A_D(f')$ is negligible:

$$A_{RAW}(f) - A_{RAW}(f') \simeq A_{CP}(f) - A_{CP}(f')$$

Charged D decay modes

Paras Naik, University of Bristol

1 May 2013, Brookhaven Forum

arXiv:1303.4906 1.0fb⁻¹ collected during 2011

· Define A_{CP} for $D^+ \rightarrow \varphi \pi^+$

$$A_{CP}(D^+ \to \phi \pi^+) = A_{\rm raw}(D^+ \to \phi \pi^+) - A_{\rm raw}(D^+ \to K_{\rm s}^0 \pi^+) + A_{CP}(K^0/\overline{K}^0)$$

arXiv:1303.4906 1.0fb⁻¹ collected during 2011

· Define A_{CP} for $D^+ \rightarrow \varphi \pi^+$

$$A_{CP}(D^{+} \to \phi \pi^{+}) = A_{raw}(D^{+} \to \phi \pi^{+}) - A_{raw}(D^{+} \to K_{S}^{0}\pi^{+}) + A_{CP}(K^{0}/\overline{K}^{0})$$
$$A_{raw} = \frac{N_{D^{+}} - N_{D^{-}}}{N_{D^{+}} + N_{D^{-}}}$$

arXiv:1303.4906 1.0fb⁻¹ collected during 2011

• Define A_{CP} for $D^+ \rightarrow \varphi \pi^+$

$$A_{CP}(D^{+} \to \phi\pi^{+}) = A_{raw}(D^{+} \to \phi\pi^{+}) - A_{raw}(D^{+} \to K_{s}^{0}\pi^{+}) + A_{CP}(K^{0}/\overline{K}^{0})$$

$$A_{raw} = \frac{N_{D^{+}} - N_{D^{-}}}{N_{D^{+}} + N_{D^{-}}}$$
Control channel where charm CPV is negligible
Removes* detection/production asymmetries

The effect of the final state asymmetry difference between KK π and $\pi\pi\pi$ final states is small, accounted for in our systematics.

arXiv:1303.4906 1.0fb⁻¹ collected during 2011

· Define A_{CP} for $D^+ \rightarrow \varphi \pi^+$

The effect of the final state asymmetry difference between KK π and $\pi\pi\pi$ final states is small, accounted for in our systematics.

arXiv:1303.4906 1.0fb⁻¹ collected during 2011

• Define A_{CP} for $D^+ \rightarrow \varphi \pi^+$

$$A_{CP}(D^{+} \to \phi \pi^{+}) = A_{raw}(D^{+} \to \phi \pi^{+}) - A_{raw}(D^{+} \to K_{S}^{0}\pi^{+}) + A_{CP}(K^{0}/\overline{K}^{0})$$

$$A_{raw} = \frac{N_{D^{+}} - N_{D^{-}}}{N_{D^{+}} + N_{D^{-}}}$$
Control channel where charm CPV is negligible
Correction due to CPV in neutral Kaon system

• Also for $D_{s^+} \rightarrow K_S^0 \pi^+$

 $A_{CP}(D_s^+ \to K_{\rm s}^0 \pi^+) = A_{\rm raw}(D_s^+ \to K_{\rm s}^0 \pi^+) + A_{CP}(K^0/\overline{K}{}^0) - A_{\rm raw}(D_s^+ \to \phi \pi^+)$

- Variation in phase across the φ resonance could mean that CPV asymmetries might be canceled out.
- We can improve sensitivity to CPV by splitting up the decay phase space into regions of similar phase.
- · Define a third variable

$$A_{CP}|_{S} = \frac{1}{2} \left(A_{\text{raw}}^{A} + A_{\text{raw}}^{C} - A_{\text{raw}}^{B} - A_{\text{raw}}^{D} \right)$$

which is also sensitive to CP.

• We found that some types of CPV can be observed more effectively with A_{CP} and others with $A_{CP}|_S$

arXiv:1303.4906

1.0fb⁻¹ collected during 2011

Charm Mixing and CP Violation at LHCb

No evidence of CPV observed

$$A_{CP}(D^+ \to \phi \pi^+) = (-0.04 \pm 0.14 \pm 0.13)\%,$$
$$A_{CP}|_S = (-0.18 \pm 0.17 \pm 0.18)\%,$$
$$A_{CP}(D_s^+ \to K_s^0 \pi^+) = (0.61 \pm 0.83 \pm 0.13)\%,$$

Most precise measurement to date for both $D_{s}^{+} \rightarrow K_{s}^{0}\pi^{+}$ and $D^{+} \rightarrow \varphi\pi^{+}$

Previous measurements $D^+ \rightarrow \phi \pi^+$

٠

- Belle (Phys.Rev.Lett. 108 071801 (2012))
- BaBar (Phys. Rev. D 71, 091101(R) (2005))

Previous measurements $D_{s^+} \rightarrow K_{s^0}\pi^+$

- Belle (Phys. Rev. Lett. 104, 181602 (2010))
- CLEO-c (Phys. Rev. D 81, 052013 (2010))

Paras Naik, University of Bristol

arXiv:1303.4906 1.0fb⁻¹ collected during 2011

Neutral D decay modes

ΔA_{CP} status (pre-Moriond 2013)

$\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^+K^-) - A_{CP}(D^0 \rightarrow \pi^+\pi^-)$

- · ΔA_{CP} measured by
 - BaBar (Phys. Rev. Lett. 100 (2008)))
 - Belle (arXiv:1212.5320)
 - LHCb (Phys. Rev. Lett. 108 (2012))
 - CDF (Phys. Rev. Lett. 109 (2012))
- World average 4.6σ deviation from zero
- Level of CP violation potentially accommodated within SM (arXiv:1202.3795, many more)
- Can also be explained by NP (arXiv:1202.2866, many more)
- Lively debate amongst theorists.

ΔA_{CP} Tagging

LHCb uses two methods to tag the D⁰ flavor

Semileptonic B decay (Secondary) Use muon charge to tag D flavor $B \rightarrow D^0 \mu^+ \nu_\mu X$ or $B \rightarrow D^0 \mu^- \nu_\mu X$

Paras Naik, University of Bristol

- Update of analysis from 2011 **0.6 fb⁻¹ \rightarrow 1.0 fb⁻¹ (full 2011 dataset)**
- Update includes new reconstruction
- Improved tracking alignment
- Improved particle identification from RICH calibration.
- Constrain the D* vertex to the primary vertex
- $\delta m \equiv m(h^+h^-\pi^+) m(h^+h^-) m(\pi^+)$
- Improves δm resolution by factor ~2.5.
- Kinematic re-weighting of D^{*} (ensures D⁰→KK and D⁰→m have the same kinematics)

ACP from D* decays

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

$$A_{RAW}(f) \simeq A_{CP}(f) + A_{P}(f) + A_{D}(\pi_{s}^{+}) + A_{p}(D^{*+})$$

measure want f's detection
asymmetry π_{s} detection
asymmetry Production
asymmetry Taking $A_{PAW}(f) - A_{PAW}(f')$ the production and slow pion

Taking $A_{RAW}(f) - A_{RAW}(f')$ the production and slow pion detection asymmetries will cancel.

$$A_{RAW}(K^{-}K^{+}) - A_{RAW}(\pi^{-}\pi^{+}) = A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+}) \equiv \Delta A_{CP}$$

Phys.Rev. D80 (2009) 076008

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

- Fit in δm
- $\delta m \equiv m(h^+h^-\pi^+) m(h^+h^-) m(\pi^+)$

- Extremely clean signal
- 2.2 million $D^0 \rightarrow K^+K^-$ candidates
- 0.7 million $D^0 \rightarrow \pi^+\pi^-$ candidates

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

Preliminary result

$$\Delta A_{CP} = (-0.34 \pm 0.15 \,(\text{stat.}) \pm 0.10 \,(\text{syst.}))\%$$

- · Considerably closer to zero than previous result
- · Larger data set
- Improved detector alignment and calibration
- Improvement in analysis technique
- Detailed systematic studies
- Many cross checks confirm our result

ΔA_{CP} Tagging

LHCb uses two methods to tag the D⁰ flavor

Semileptonic B decay (Secondary) Use muon charge to tag D flavor $B \rightarrow \bar{D^0}\mu^+\nu_\mu X$ or $B \rightarrow D^0\mu^-\nu_\mu X$

Paras Naik, University of Bristol

ΔA_{CP} from semileptonic B decays

arXiv:1303.2614 1.0fb⁻¹ collected during 2011

$$A_{RAW}(f) = A_{CP}(f) + A_D(f) + A_D(\mu^+) + A_p(B)$$

Detection and production
asymmetries
independent from D*
analysis

Taking $A_{RAW}(f) - A_{RAW}(f')$ the production and muon detection asymmetries cancel.

$$A_{RAW}(K^{-}K^{+}) - A_{RAW}(\pi^{-}\pi^{+}) = A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+}) \equiv \Delta A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+}) = \Delta A_{CP}(K^{-}K^{+}) + \Delta A_{CP}(K^{-}K^{+}) = \Delta A_{CP}(K^{+}K^{+}) + \Delta A_{CP}(K^{+}K^{+}) = \Delta A_{CP}(K^{+}K^{+}) + \Delta A_{CP}(K^{+})$$

1 May 2013, Brookhaven Forum

ΔA_{CP} from semileptonic B decays

arXiv:1303.2614 1.0fb⁻¹ collected during 2011

- Clean signal
- 0.6M D \rightarrow K+K⁻ candidates
- 0.2M D $\rightarrow \pi^+\pi^-$ candidates

Comparison of D* and semileptonic ΔACP

(Prompt) D* decays Preliminary

LHCB-CONF-2013-003

 $\Delta A_{CP} = (-0.34 \pm 0.15 \,(\text{stat.}) \pm 0.10 \,(\text{syst.}))\%$

Semileptonic decays

arXiv:1303.2614 $\Delta A_{CP} = (0.49 \pm 0.30 \,(\text{stat}) \pm 0.14 \,(\text{syst}))\%$

- These measurements are compatible at 3% level ($\chi^2 = 4.85$)
- Statistical correlation between the two data samples is negligible
- · Systematic uncertainties essentially uncorrelated

Preliminary combination: $\Delta A_{CP} = [-0.15 \pm 0.16] \%$

 \cdot See Alan Schwartz's talk for a discussion of the impact of these measurements

neglecting indirect CPV

Conclusion

- First single D⁰ mixing measurement above 5σ [PRL 110, 101802 (2013)]
- Best limits on CPV for $D^+ \rightarrow \phi \pi^+$ and $D_{s^+} \rightarrow K_S^0 \pi^+$ (arXiv:1303.4906)
- Using D⁰ from D^{*} decays and D⁰ from B decays, we have measured:
 - ΔA_{CP} = (-0.34 ± 0.15(stat.) ± 0.10(syst.))% via D* decays (LHCB-CONF-2013-003)
 - ΔA_{CP} = (0.49 ± 0.30(stat) ± 0.14(syst))% via semileptonic B decays (arXiv:1303.2614)
 - Many cross checks performed
 - Preliminary combination $\Delta A_{CP} = (-0.15 \pm 0.16)\%$ (not including indirect CPV)
- These analyses were performed on 1.0 fb⁻¹ @ 7 TeV data from 2011.
 - 2 fb⁻¹ data @ 8 TeV from 2012 still to be added to our many CPV searches.
 - The LHCb detector is working beautifully, look forward to more results soon!
Additional Slides

AACP Preliminary new world average

arXiv:1303.2614 LHCB-CONF-2013-003

• New average includes BaBar, CDF, Belle and new LHCb results

Knowledge of the Neutral Charm System

Averages by HFAG (March 2012, April 2013)

1 May 2013, Brookhaven Forum

ΔA_{CP} from D* decays : Cross checks

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

- ΔA_{CP} stability checked
- Against time at which data was taken
- Various reconstructed quantities:
 - D⁰ рт
 - D⁰ η
 - D⁰ p
 - D⁰ decay time
- Analysis performed on large Monte Carlo samples to check for bias
- Many more

ΔA_{CP} from D* decays

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

· Preliminary result

$$\Delta A_{CP} = (-0.34 \pm 0.15 \,(\text{stat.}) \pm 0.10 \,(\text{syst.}))\%$$

- Source of systematic uncertainties
- Soft pions with large IPχ² for pointing to PV
- · Effect due to multiple scattering
 - Results in poor mass distribution
 - Should not depend on D⁰ decay mode
 - Raw asymmetry observed in these candidates
- Analysis repeated with these candidates removed
- Dominant systematic 0.08%

ΔAcp via Semileptonic: Cross checks 1.0fb⁻¹ collected during 2011

- Many cross checks carried out
- ΔA_{CP} stable with
- reconstructed quantities:
 - D⁰ decay time
 - B flight distance
 - reconstructed D⁰-µ mass
 - angle between μ and D^0 daughters
 - p_T of D^0 and μ
 - η of D^0 and μ
- data taking period
- many more

ΔA_{CP} from semileptonic B decays

arXiv:1303.2614 1.0fb⁻¹ collected during 2011

• Result

$$\Delta A_{CP} = (0.49 \pm 0.30 \,(\text{stat}) \pm 0.14 \,(\text{syst}))\%$$

- Main source of systematic from low lifetime background in $D^0 \rightarrow \pi^+\pi^-$ decays
- More low lifetime background in $D^0 \rightarrow \pi^+\pi^-$ than $D^0 \rightarrow K^+K^-$
- We required positive decay times in our analysis
- Analysis repeated including negative decay times
- Systematic uncertainty of 0.11%

ΔA_{CP} D* comparison to 2011 result

ΔA_{cp} from D* decays comparison to 2011 result

Analysis using method from 2011

First half 2011 candidates (600pb⁻¹)

ΔA_{CP} from D^{*} decays comparison to 2011 result

ΔA_{CP} from D^{*} decays comparison to 2011 result

ΔA_{CP} from D* decays comparison to 2011 result

ΔA_{CP} from D^{*} decays comparison to 2011 result

ΔA_{CP} from D^{*} decays comparison to 2011 result

• Previous results:

Experiment	ΔA_{CP}	
LHCb	$(-0.82 \pm 0.21 \pm 0.11)\%$	Phys. Rev. Lett. 108 (2012) 111602
CDF	$(-0.62 \pm 0.21 \pm 0.10)\%$	Phys. Rev. Lett. 109 (2012) 111801
Belle	$(-0.87 \pm 0.41 \pm 0.06)\%$	arXiv:1212.5320
BaBar	$(+0.24 \pm 0.62 \pm 0.26)\%$	Phys. Rev. Lett. 100 (2008)

Analysis technique

- **D**^{*} **re-weighted in p and p**_T ($D^0 \rightarrow KK$ and $D^0 \rightarrow \pi\pi$ same kinematics)
- Break dataset into 4 subsets
 - Hardware trigger (LO) on D⁰ daughters (Trigger on Signal)
 - Magnet Up
 - Magnet Down
 - Hardware trigger (LO) on other particles from pp collision (Trigger Independent of Signal)
 - Magnet Up
 - Magnet Down
- ΔA_{CP} calculated for each subset and result is weighted average

ΔA_{CP} from D* decays

- Kinematic Re-weighting
- Re-weight D^{*} candidates so both D⁰ \rightarrow KK and D⁰ \rightarrow $\pi\pi$ have the same kinematics

ΔA_{CP} from D* decays

ΔA_{CP} from D* decays

Also D⁰ distributions agree after weighting for D* kinematics

Also slow pion distributions agree after weighting for D* kinematics

ΔA_{CP} from D^{*} decays : Cross checks

- Effects investigated for systematics
 - Peaking backgrounds
 - Tighter particle ID cuts
 - Different D* selection
 - Comparing results with and without kinematic re-weighting
- ΔA_{CP} stability checked
 - Against time which data was taken
 - Various reconstructed quantities:
 - D⁰ p_T
 - D⁰ η
- Analysis performed on large Monte Carlo samples to check for bias
- $\Delta \langle t \rangle / \tau(D^0) = (11.27 \pm 0.13)\%$
- many more

 Sources of systematic uncertainties for D* analysis

Source	Uncertainty	
Multiple candidates	0.01%	
Peaking background	0.03%	
Fit model	0.03%	
Reweighting	0.01%	
Soft pion $IP\chi^2$	0.08%	
Fiducial cut	0.02%	
Total	0.10%	

- Soft pions which do not point to primary vertex (before constraint)
 - Effect due to multiple scattering
 - Results in poor mass distribution
 - Should not depend on D⁰ decay mode
 - Raw asymmetry observed in these candidates
 - Analysis repeated with these candidates removed
 - Dominant systematic 0.08%

Source	Uncertainty	
Multiple candidates	0.01%	
Peaking background	0.03%	
Fit model	0.03%	
Reweighting	0.01%	
Soft pion $IP\chi^2$	0.08%	
Fiducial cut	0.02%	
Total	0.10%	

- Tighter particle identification cut
 - Analysis repeated with tighter particle identification cuts.
- Fiducial cuts
 - Analysis repeated with altered fiducial cuts.
- Re-weighting
 - Re-weighting D⁰ such that $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^+K^-$ kinematics match.
 - Analysis repeated without kinematic re-weighting.

Source	Uncertainty	
Multiple candidates	0.01%	
Peaking background	0.03%	
Fit model	0.03%	
Reweighting	0.01%	
Soft pion $\mathrm{IP}\chi^2$	0.08%	
Fiducial cut	0.02%	
Total	0.10%	

- Multiple candidates
 - Analysis repeated with a random candidate in events with multiple candidates removed.
- Peaking background
 - D mass peaks used to test for potential peaking background contributions.
- Fit model
 - Analysis repeating with the asymmetry extracted through sideband subtraction instead of a fit.

Source	Uncertainty	
Multiple candidates	0.01%	
Peaking background	0.03%	
Fit model	0.03%	
Reweighting	0.01%	
Soft pion $\mathrm{IP}\chi^2$	0.08%	
Fiducial cut	0.02%	
Total	0.10%	

ΔA_{CP}

- Magnetic field induces left/right differences between the D*+ and D*due to the slow pion
- Acceptance effect at edges of detector
- Beam-pipe shadow
- We remove this asymmetry
- We remove areas of large asymmetry to avoid secondary effects
- Frequently flip the magnetic field
- Detector asymmetries removed in difference between RAW asymmetries

ΔA_{CP}

- Magnetic field induces left/right differences between the D*+ and D*due to the slow pion
- Acceptance effect at edges of detector
- Beam-pipe shadow
- We remove this asymmetry
- We remove areas of large asymmetry to avoid secondary effects
- Frequently flip the magnetic field
- Detector asymmetries removed in difference between RAW asymmetries

ΔA_{CP}

- Magnetic field induces left/right differences between the D*+ and D*due to the slow pion
 - Acceptance effect at edges of detector
 - Beam-pipe shadow
- We remove this asymmetry
 - We remove areas of large asymmetry to avoid secondary effects
 - Frequently flip the magnetic field
 - Detector asymmetries removed in difference between RAW asymmetries

 D⁰ candidates given weight depending on p_T and η distribution

- D⁰ candidates given weight depending on p_T and η distribution
- Muon kinematics also in good agreement after reweighting

 $\Delta A_{CP} = (0.49 \pm 0.30 \,(\text{stat}) \pm 0.14 \,(\text{syst}))\%$.

Systematic uncertainties

- Pairing a D⁰ with random muon (mistag)
 - Dilutes signal
 - Difference in mistag probability between D⁰ and anti-D⁰ is (0.006 ± 0.021)%
- Decay Time
 - Decay time acceptance can differ between KK and $\pi\pi.$
 - Difference in direct and indirect CPV component
 - Small $\Delta < t > \rightarrow \Delta A_{CP} = \Delta a_{CP}^{dir}$

$$\frac{\Delta \langle t \rangle / \tau(D^0) = 0.018 \pm 0.002 \,(\text{stat}) \pm 0.007 \,(\text{syst})}{\overline{\langle t \rangle} / \tau(D^0) = 1.062 \pm 0.001 \,(\text{stat}) \pm 0.003 \,(\text{syst})}$$

• Raw asymmetries and ΔA_{CP} split for each magnet polarity

	Magnet up	Magnet down	Mean
$A_{ m raw}(K^-K^+)$	$-0.39{\pm}0.23$	$-0.20{\pm}0.19$	$-0.29{\pm}0.15$
$A_{ m raw}(\pi^-\pi^+)$	-1.25 ± 0.40	$-0.29 {\pm} 0.34$	$-0.77 {\pm} 0.26$
ΔA_{CP}	$0.86 {\pm} 0.46$	$0.09 {\pm} 0.39$	$0.48 {\pm} 0.30$
ΔA_{CP} from semileptonic B decays

• Source of systematic uncertainties

Source of uncertainty	Uncertainty
Production asymmetry:	
Difference in <i>b</i> -hadron mixture	0.02%
Difference in B decay time acceptance	0.02%
Production and detection asymmetry:	
Different weighting	0.05%
Background from real D^0 mesons:	
Mistag asymmetry	0.02%
Background from fake D^0 mesons:	
D^0 mass fit model	0.05%
Low lifetime background in $D^0 \rightarrow \pi^- \pi^+$	0.11%
Λ_c^+ background in $D^0 \to K^- K^+$	0.03%
Quadratic sum	0.14%

CP violation in $D^{\scriptscriptstyle +} \twoheadrightarrow \phi \pi^{\scriptscriptstyle +}$ and $D_{s^{\scriptscriptstyle +}} \twoheadrightarrow K_S{}^0 \pi^{\scriptscriptstyle +}$

CP violation in D⁺ $\rightarrow \phi \pi^+$ and D_s⁺ $\rightarrow K_S^0 \pi^+$ Current status

- $D_{s^+} \rightarrow K_{s^0}\pi^+$ previously measured by
 - CLEO-c
 - Belle
- $D^+ \rightarrow \varphi \pi^+$ measured by
 - Belle
 - BaBar

LHCB-PAPER-2012-052 1fb⁻¹ collected during 2011

CP violation in D⁺ $\rightarrow \phi \pi^+$ and D_s⁺ $\rightarrow K_S^0 \pi^+$

$\begin{array}{c} {}_{\texttt{LHCB-PAPER-2012-052}}\\ {}_{1fb^{-1}\ \text{collected during 2011}}\\ \text{CP violation in } D^+ \rightarrow \phi\pi^+ \ \text{and} \ D_s^+ \rightarrow K_S{}^0\pi^+ \end{array}$

- Main sources of systematic uncertainty
 - Detector efficiency differences (magnet up/magnet down)
 - Uncertainties in background model
 - kaon interaction asymmetries
 - CP violation in the neutral kaon system

Source	$A_{CP} (D^+) [\%]$	$A_{CP} (D_s^+) [\%]$	$A_{CP} _S$ [%]
Triggers	0.114	0.114	n/a
D_s^+ control sample size	n/a	n/a	0.169
Kaon asymmetry	0.031	0.002	0.009
Binning	0.029	0.029	n/a
Resolution	0.007	0.006	0.056
Fitting	0.033	0.033	n/a
Kaon CP violation	0.028	0.028	n/a
Fiducial effects	0.022	0.022	n/a
Backgrounds	0.008	n/a	0.007
D from B	0.003	0.015	0.003
Regeneration	0.010	0.010	n/a
Total	0.132	0.128	0.178

D⁰ mixing

D⁰ mixing

- Majority of systematic uncertainties cancel in ratio
- Main sources of systematics which do not cancel in ratio
 - Pollution from D⁰'s from B decays results in wrong time.
 - Some double mis-ID events $(D^0 \rightarrow K^-\pi^+$ seen as $D^0 \rightarrow K^+\pi^-$) pollutes WS sample
 - Other sources of uncertainty (production/detection efficiencies) of order 10⁻⁴ can be neglected.
- Systematics account for ~10% of overall uncertainty

Search for CP asymmetries in $D^0 \rightarrow \pi^+\pi^-\pi^-$ decays

Method

- D⁰ → π⁺π⁺π⁻π⁻ is singly Cabibbo-suppressed, and the SM can allow (very) small CP Violation effects due to penguin diagrams.
- Adaptively bin the five parameter phase space to search for local CP asymmetries in this channel.

 ^{*}
 ^{*}
 - Model-independent Miranda method (PRD 80, 096006)

$$S_{CP} = \frac{N_i - \alpha \bar{N}_i}{\sqrt{N_i + \alpha^2 \bar{N}_i}} \qquad \alpha = \frac{N_{\text{total}}}{\bar{N}_{\text{total}}}$$

- Plot histogram of number of bins vs. SCP
- Expected distribution for <u>no CPV</u> has a mean of 0 and width of 1

Simulation by Bediaga et al. (PRD 80, 096006)

Paras Naik, University of Bristol

1 May 2013, Brookhaven Forum

Preliminary Results

• Using 1.0 fb⁻¹ of data (~1.8 x 10⁵ D⁰ $\rightarrow \pi^+\pi^+\pi^-\pi^-$ decays) we calculate:

$$\chi^2 = \sum (S^i_{CP})^2$$

and p-values under the assumption of no CPV.

- Observe <u>no CPV</u> with probability value of 99.8%
 - 66 bins, result stable with different bin choices

More Slides

Vertex Locator (VELO)

- Reconstruction of primary and (displaced) secondary vertices
- Excellent Impact Parameter resolution of ~ 20 μ m
- Proper time resolution 30 to 50 fs

Experiment Overview

 The LHCb detector is a single arm forward spectrometer with a polar angular coverage from 10 to 300 mrad in the horizontal plane and 250 mrad in the vertical plane.

Paras Naik, University of Bristol

1 May 2013, Brookhaven Forum

Even More Slides

LHCb Experiment: Particle ID

- Particle ID provided by <u>Ring Imaging Cherenkov</u> (RICH) detectors
 - Particles traveling faster than the speed of light through a medium of refractive index n will emit photons through Cherenkov radiation:
 - $\cos(\theta) = 1/n\beta$
- The Cherenkov angle and the momentum of the particle allows PID.

The ability to identify particles at LHCb is critical to many of our analyses.

ΔA_{CP} from D* decays

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

$$A_{RAW}(f) \simeq A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}^{+}) + A_{p}(D^{*+})$$

π_s detection asymmetry

Production asymmetry

Taking $A_{RAW}(f) - A_{RAW}(f')$ the production and slow pion detection asymmetries will cancel

 $A_{RAW}(K^{-}K^{+}) - A_{RAW}(\pi^{-}\pi^{+}) = A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+}) \equiv \Delta A_{CP}$

Indirect and direct CPV can contribute

Phys.Rev. D80 (2009) 076008

- Indirect CPV is ~universal
 - Indirect CPV cancels in A(K+K-)–A(π+π-) if lifetime acceptance same for KK and ππ
 - If not contribution A^{ind}[<t_{KK}>_{acc}-<t_{ππ}>_{acc}]/τ₀

LHCb Experiment

- Smooth running of the detector thanks to over 800 members.
- High beam quality provided by the LHC makes our analyses possible.

D⁰ mixing at LHCb

PRL 110, 101802 (2013) 1.0fb⁻¹ collected during 2011

ΔA_{CP} from semileptonic B decays

arXiv:1303.2614 1.0fb⁻¹ collected during 2011

$$A_{RAW}(f) = A_{CP}(f) + A_D(f) + A_D(\mu^+) + A_p(B)$$

Detection and production
asymmetries
independent from D*
analysis

Taking $A_{RAW}(f) - A_{RAW}(f')$ the production and muon detection asymmetries will cancel if kinematics of muon and B meson are the same for both $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$

$$A_{RAW}(K^{-}K^{+}) - A_{RAW}(\pi^{-}\pi^{+}) = A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+}) \equiv \Delta A_{CP}$$

LHCb Experiment

Paras Naik, University of Bristol

1 May 2013, Brookhaven Forum

D⁰ mixing

- First evidence in 2007 by BaBar and Belle
 - [Phys.Rev.Lett. 98 (2007) 211802, Phys.Rev.Lett. 98 (2007) 211803]

Time-evolution described by Schrödinger equation:

$$i\frac{\partial}{\partial t} \left(\begin{array}{c} D^{0}(t) \\ \overline{D}^{0}(t) \end{array} \right) = (M - i\Gamma) \left(\begin{array}{c} D^{0}(t) \\ \overline{D}^{0}(t) \end{array} \right)$$

Mass eigenstates are $| D_{1,2} \rangle = p | D^0 \rangle \pm q | \overline{D}^0 \rangle$

Size of mixing characterized by $x = \frac{m_2 - m_1}{\Gamma}$, $y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$ Mixing if $\mathbf{x} \neq \mathbf{0}$ or $\mathbf{y} \neq \mathbf{0}$

Common Strategies for D Mixing & CP Violation

- Use control modes / normalization channels for initial studies with data
- Perform systematic studies on data
 - Prompt-secondary distinction
 - Lifetime acceptance correction
- Using prompt charm
 - More events
 - Need to measure contribution from secondary
- Using charm from B decays
 - Lower cross-section, but higher p_T = higher trigger efficiency
 - Need to precisely measure D production vertex

Mixing using WS Kπ decays

- Two contributions to decay:
 - DCS decay
 - CF decay after D0 mixing

$$R_M = (x^2 + y^2)/2 = (x'^2 + y'^2)/2$$

$$x' \equiv x \cos \delta + y \sin \delta$$

$$y' \equiv y \cos \delta - x \sin \delta$$

$$r_{\rm WS}(t) \propto e^{-\Gamma t} \left(R_D + \sqrt{R_D} y'(\Gamma t) + \frac{1}{2} R_M (\Gamma t)^2 \right)$$

- Measure time x'² and y' in evolution of WS decays
- δ : relative strong phase between two decay amplitudes
- *R_D*: ratio between DCS decay rate and CF decay rate
- BR(WS) ~ BR(RS) / 250
- WS selection needs to be much tighter than RS to suppress background
- Expect dataset for significant improvement in mixing measurement in the course of next year

Уср & Аг

- Two ways to measure CPV in mixing:
 - Lifetime ratio y_{CP} shows CPV if different from y

$$y_{CP} = \frac{\Gamma(CP \text{ even}) - \Gamma(CP \text{ odd})}{\Gamma(CP \text{ even}) + \Gamma(CP \text{ odd})} = \frac{\hat{\tau}(D \to \pi^+ K^-)}{\hat{\tau}(D \to K^+ K^-)} - 1 = y \cos \phi - x \sin \phi \frac{A_m}{2}$$

Lifetime difference in decay to CP eigenstate shows CPV if ≠0

$$A_{\Gamma} = \frac{\tau(\bar{D^0} \to K^+ K^-) - \tau(D^0 \to K^+ K^-)}{\tau(\bar{D^0} \to K^+ K^-) + \tau(D^0 \to K^+ K^-)} = \frac{1}{2} A_M y \cos \phi - x \sin \phi$$

- y_{CP}: can use untagged D⁰ decays
- A_{Γ} : need flavor-tagged D⁰ decays...
 - $D^{*+} \rightarrow D^0 \pi^+, D^{*-} \rightarrow \overline{D}^0 \pi^-$
 - The slow pion tags the flavor of the D⁰.

 $y_{CP} = (1.107 \pm 0.217)\% \text{ current world-average} \\ \text{dominated by BaBar using} \\ 2.7M \text{ K}\pi \text{ and } 260\text{k KK events in } 0.38/\text{ab} \\ \underline{\text{BaBar: Phys.Rev.D80:071103,2009}} \end{cases}$

 $A_{\Gamma} = (0.123 \pm 0.248)\% \text{ current world-average based on}$ ~2M K\u03c0, ~180,000 KK, ~80,000 \u03c0 n\u03c0 events at BaBar + Belle <u>Belle: Phys.Rev.Lett.98:211803,2007</u> <u>BaBar: Phys.Rev.D78:011105,2008</u>

 $A_m = |q/p|^2 - 1$ and $\varphi = \arg(q/p)$ parameterize CPV in mixing – very small in SM

Prompt-Secondary Separation

- Separate prompt and secondary charm
 - Prompt charm
 - Defined as charm mesons produced at the primary interaction point.
 - This includes if they are from quickly decaying resonances
 - Examples: via D* decays, $\psi(3770)$
 - Secondary charm
 - Residual background from charm mesons decaying from long-lived particles.
- We can measure the prompt fraction
 - Look at impact parameter distribution of the charm meson

Experiment Overview (2)

- Accurate decay time resolution from our vertex locator (VELO)
- Particle ID provided by <u>Ring Imaging Cherenkov</u> (RICH) detectors
- High muon reconstruction efficiency from muon stations
- Good momentum resolution from tracking stations, $\Delta p/p = 0.35\% 0.55\%$

LHCb detector

- Forward detector
- Precision tracking
- Excellent vertex resolution
- Excellent K/π separation provided by two Ring Imaging Cherenkov detectors

LHCb detector

LHCb detector

- Forward detector
- Precision tracking
- Excellent vertex resolution
- Excellent K/π separation provided by two Ring Imaging Cherenkov detectors

Luminosity

- 1.0 fb⁻¹ at 7 TeV collected by LHCb in 2011
 - Today's Analyses
- 2 fb⁻¹ at 8 TeV collected by LHCb in 2012 (future analyses)
- Nominal instantaneous luminosity: $\mathscr{L} = 4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- LHCb instantaneous luminosity kept constant (luminosity leveling).

Paras Naik, University of Bristol

1 May 2013, Brookhaven Forum