CMB lensing measurements and the impact of astrophysical foregrounds

A. van Engelen Stony Brook

Work with N. Sehgal, S. Bhattacharya, G. Holder, O. Zahn

Overview

- CMB lensing and reconstructions
- Science Goals
- Practicalities: astrophysical foregrounds

Brief History of the Universe

(not to scale)

The CMB as a backlight for nearer objects

Wayne Hu's website background.uchicago.edu/~whu

ACT (2007-2010) ACTpol (2013-...)

- Atacama Plateau, Chile
- Wide-field surveys at 148, 220 GHz
- Small beam (1'.4)
- Low noise

+01°

WMAP

CMB Lensing

Photons get shifted by intervening mass: $T^{L}(\hat{\mathbf{n}}) = T^{U}(\hat{\mathbf{n}} + \nabla \phi(\hat{\mathbf{n}}))$

Add many deflections along line of sight:

$$\nabla \phi(\hat{\mathbf{n}}) = -2 \int_0^{\chi_\star} d\chi \, \frac{\chi_\star - \chi}{\chi_\star \chi} \nabla_\perp \Phi(\chi \hat{\mathbf{n}}, \chi)$$

- CMB is unique for lensing measurements:
 - It's Gaussian, with well-understood power spectrum
 - Its redshift is (a) unique, (b) known, (c) highest

Lensing potential $\phi(\hat{\mathbf{n}})$

- Lensing angle small: $|\nabla \phi|$ _{RMS} ~ 2'.7
- Coherent over large scales (10°)
- Broad kernel in matter, peaks at z ~ 2

Effect of lensing

unlensed cmb

Effect of lensing

lensed cmb

Lens-induced CMB Mode Coupling

 $T(\hat{\mathbf{n}}) = T^{U}(\hat{\mathbf{n}} + \nabla \phi(\hat{\mathbf{n}}))$ $= T^{U}(\hat{\mathbf{n}}) + \nabla T^{U}(\hat{\mathbf{n}}) \cdot \nabla \phi(\hat{\mathbf{n}}) + \dots$

• Lens-induced mode coupling for $l_1 \neq -l_2$: $\langle T(\mathbf{l}_1)T(\mathbf{l}_2) \rangle = f(\mathbf{l}_1, \mathbf{l}_2)\phi(\mathbf{L})$

 $\mathbf{L} = \mathbf{l}_1 + \mathbf{l}_2$

Wednesday, May 1, 13

Simulated Reconstruction Results

Input

Recovered (filtered for large scales)

17°x17°

Timeline: CMB lensing detections

	φ-gal. crosspower		φ autopower	CMB peak-
2007	WMAP3xNVSS 3.4 or Smitht			ACBAR ~30 Calabraset Reichardtt
2008	Siniti	WMAP3xNVSS 2.5 σ Hirata+		Calabrese ⁺ , Reichardt ⁺
2011			ACT 4 σ Das+	ACT ~3 σ Dunkley+ S σ Keisler+
2012	SPT x(WISE, Spitzer 4-5 or Bleem+ ACTxSDSSquasars 3.8 or Sherwin+	er/IRAC, BCS) WMAP5xNVSS 4 σ Fangt	SPT 6.3 σ van Engelen+ ACT 4.6 σ Das+	ACT ~3 σ Sievers+ Story+
2013	SPTxHerso 7-9 σ Holder Planck×PlanckClB 42 σ Planck Collab.	+ Planckx 7-20 σ Planck Collab.	Planck 25 σ Planck Collab.	Planck 10 σ Planck Collab.

Timeline: CMB lensing detections

	φ-gal. crosspower		φ autopower	CMB peak-
2007	WMAP3xNVSS 3.4 or Smithet			ACBAR ~30
2008	Sinicit	WMAP3xNVSS 2.5 σ Hirata+		Calabrese+, Keichardt+
2011			ACT 4 σ Das+	ACT ~3 σ Dunkley+ S σ Keisler+
2012	SPT _× (WISE, Spitzer/IRAC, BCS) 4-5 σ Bleem+		SPT 6.3 σ van Engelen+	ACT ~3 σ Sievers+ SPT 8 σ
	ACTxSDSSquasars 3.8 σ Sherwin+	WMAP5xNVSS 4 or Fang+	ACT 4.6 σ Das+	Story+
2013	SPTxHerschelCIB 7-9 σ Holder+			
	Planck×PlanckCIB 42 σ Planck Collab.	Planck x 7-20 σ Planck Collab.	Planck 25 σ Planck Collab.	Planck 10 σ Planck Collab.
Future			ACTpol, SPTpol ~ 60σ	

Contamination from Astrophysical Foregrounds

17°x17°

(Sehgal et al 2009) Unmodified

Reconstructed lensing

Contamination from Astrophysical Foregrounds

- Sunyaev-Zel'dovich clusters
- Compute bias, using simulations (Sehgal+ 2009 [updated],
 Bhattacharya+ in prep.) and theory
- Few % bias needs to be modeled & subtracted

Contamination from Astrophysical Foregrounds

Point sources (<1% with masking)

 Also: correlations with lensing (5-10%)

To do: palanized sources

 $2.0 \cdot 10^{-1}$

 $1.5 \cdot 10^{-9}$

Wednesday, May 1, 13

Summary

- Lensing has recently moved from "detection" to "precision measurement"
- ACTpol, SPTpol are coming soon many 10s of sigmas
- Foreground biases become important for %-level measurements ($\Sigma m_{\nu,} w, ...$) -- we have a handle on modelling them.