Recent Advances in Formal Theory

Brookhaven Forum 2013

Juan Maldacena

The Standard Model Works!

- Is the EW scale fine tuned?
- Are there other particles below at few TeV?

Dark matter?

Lots of problems for phenomenology.

Success of QFT

- Nature is well described by QFT.
- It is weakly coupled at the 100's of Gev's and reasonably understood.

What is left to do?

Some problems of ``formal'' QFT

- Develop better computational techniques.
- Understand QFT in general. (Motivation: New fundamental physics and condensed matter theory. Condensed matter can give us lessons → recall the Higgs!)
- Strong coupling
- Gauge theories and strings.
- Understand CFT's (Fixed points) and the flows connecting them.
- Relation between field theory and quantum gravity (AdS/CFT)
- QFT in various dimensions.

Beyond QFT

- Quantum gravity and string theory.
- Quantum aspects of black holes.
- Cosmology, fundamentals of inflation, measure problems, initial singularity, quantum cosmology.

All of these topics have multiple connections with each other.

Supersymmetric theories

- Still?
- They are simpler QFT's, and more solvable (like the mouse is a model for a human in biology).
- We can do exact computations.
- $\mathcal{N}=4$ SYM.
- $\mathcal{N}=2$ SUSY theories
- $\mathcal{N}=1$ SUSY theories
- N=0 ...

Great advances in calculational techniques

- Advances in computing quantities that depend on the coupling.
- 1- Integrability (in planar $\mathcal{N}=4$ SYM)

 Review: arXiv:1012.3982

 Minahan, Zarembo, Beisert, Staudacher Gromov, Kazakov, Vieira, Basso,
- 2- Special observables in SUSY theories: Sphere partition functions, circular Wilson loops, etc. Full path integral > finite dimensional integral (localization)

Nekrasov, Pestun, Kapustin, Jacob, Willet, ...

 These become tools to explore these theories, testing dualities, etc.

$\mathcal{N}=4$ SYM

- $\mathcal{N}=4$ SYM = Maximally supersymmetric version of U(N) QCD. Gluons + fermions + scalars (all in the adjoint).
- Planar limit $N \rightarrow \infty$, $g^2 N = fixed$.

Example:

Power radiated by a moving quark in $\mathcal{N}=4$ SYM

$$P = 2\pi Ba^2$$

$$B = \frac{1}{4\pi^2} \frac{\sqrt{\lambda} I_2(\sqrt{\lambda})}{I_1(\sqrt{\lambda})} \qquad \lambda = g^2 N$$

Bessel functions

Large N gauge theories and strings

Gluon: color and anti-color

Take N colors instead of 3, SU(N)

t' Hooft '74

Large N limit

 $g^2N = fixed$, $N \rightarrow infinity$

String coupling ~ 1/N

Integrability in the gauge/string theory

- Chains of gluons \rightarrow strings \rightarrow 2d theory on the string is integrable (i.e. solvable) for $\mathcal{N}=4$ SYM.
- (leads to interesting connections to previously studied condensed matter theories).
- Computation of anomalous dimensions.
- Computation of scattering amplitudes in $\mathcal{N}=4$ SYM.

Simplest lowest dimensional operator. (Twist two operator at weak coupling)

$$O = Tr[\phi^I \phi^I]$$

arXiv:0906.4240 Gromov, Kazakov, Vieira.

The gauge/gravity duality

- Duality between strongly coupled field theories and gravity.
- Gravity in AdS of other spacetimes with a boundary.
- Field theories are strongly coupled when the gravity approximation is correct.
- Example: $\mathcal{N}=4$ SYM and AdS₅ x S⁵

Gauge/gravity duality and strongly coupled systems.

- Using the duality to perform computations in strongly coupled systems.
- Black holes and thermal systems

Son, Kovtun, Starinets

- Quark gluon plasma $\eta/s = 1/4\pi$
- High T_c superconductors
- Cold atoms.
- Fermi surfaces and black holes with an AdS₂ region.

Gubser, Hartnol, Herzog, Horowitz, Faulkner, Liu, Mc. Greevy, Vegh, Zaanen, Schalm, Sachdev,...

<u>Amplitudes</u>

Witten, Britto, Cachazo, Feng, Arkani Hamed, et al. ...

Bern, Dixon, Kosower, ...

 BCFW recursion relations → fast way to compute tree amplitudes (and loop integrands).

- Amplitude/ Wilson loop connection.
- Simpler computation of amplitude.
- Use a lot of fun mathematical techniques, twistors, algebraic geometry, etc.

Momenta define a polygon.

Can define a Wilson loop with this contour

6 point, two loop amplitudes:

Very complicated computer expression

Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich

Amplitude/Wilson loop connection

Analytic expression (6 pages)

Drummond, Henn, Korchemsky, Sokatchev
Del Duca, Dhur, Smirnov

Symbology...

Goncharov, Spardlin, Vergu, Volovich

2 lines.

Amplitudes at strong coupling → Area of minimal area surfaces in AdS

Constraining renormalization group flows between Conformal Field Theories

c, f, a are quantities that decrease along renormalization group Flows in d=2,3,4 dimensions.

$$T^{\mu}_{\mu} = cR$$

$$T^{\mu}_{\mu} = aE = a(R^2_{\mu\nu\rho\sigma} + \cdots)$$

$$f = -\log Z_{S^3}$$

$$\log Z_{S^2} \sim c \log \Lambda$$

$$\log Z_{S^4} \sim a \log \Lambda$$

c, a and f theorems

- They decrease along the renormalization group flow.
- This puts some order in the space of QFT's.
- General statements, no susy required.
- c: in 2d proof using stress tensor ward identities.
 Newer proof using entanglement entropy.

 Zamolodchikov
 Casini, Huerta
- a: in 4d proof using anomaly matching argument for the conformal anomaly + unitarity. Komargodski, Schwimmer
- f: In 3d → argument using entanglement.

Casini, Huerta

Entanglement

$$|\Psi\rangle \sim |+\rangle_1|-\rangle_2 + |-\rangle_1|+\rangle_2$$

The vacuum in QFT is highly entangled.

In 2 +1 dimensions, for a circular region:

$$S = \frac{R}{\epsilon} + \text{Finite}$$

- Now: In 3d: Entanglement of a circular region
 = sphere partition function.
- Theories with AdS duals → Geometric computation in terms of a minimal surface in the bulk.

Black holes

 Precision counting of the microstates of black holes. Connections with mathematics. Wall crossing >> bound states coming in an out.

Sen, et al

- Black hole information problem.
- How the black hole interior is realized?

Almeheri, Marolf, Polchinski, Sully

- Black holes have been a source of information!!
- And they will probably continue to be...

Conclusions

- Many interesting directions
- Long standing problems are being solved
- Great increase in calculational ability for special theories.
- Greater understanding of various dualities and relations between theories.
- Interesting interplay between gravity, quantum field theory, quantum information, etc.

Thank you