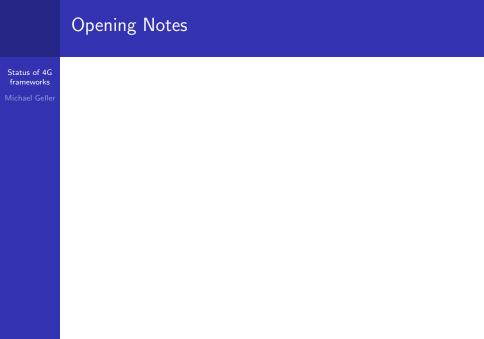
Status of 4G frameworks Michael Geller


"Two Higgs doublets, a 4th generation and a 125 GeV Higgs"

Michael Geller

Technion, Israel BNL Forum 2013

Collaborators: S. Bar-Shalom, A. Soni, G. Eilam

- "The need for new search strategies for fourth generation quarks at the LHC", M. G., S. Bar-Shalom, G. Eilam, arXiv:1205.0575 PLB 2012
- "125 GeV Higgs in the context of four generations with 2 Higgs Doublets", M. G., S. Bar-Shalom, G. Eilam, A. Soni, arXiv:1209.4081 PRD 2012
- "Dynamical origin for the 125 Higgs in a hybrid two Higgs doublet model model with heavy quarks ", S. Bar-Shalom, M. G. , A. Soni, work in progress

Opening Notes

- In the SM4 the yukawa terms reach a landau-pole at the TeV scale
 - Strong dynamics
 - Dynamical electro-weak symmetry breaking

Opening Notes

Status of 4G frameworks Michael Gelle

- In the SM4 the yukawa terms reach a landau-pole at the TeV scale
 - Strong dynamics
 - Dynamical electro-weak symmetry breaking

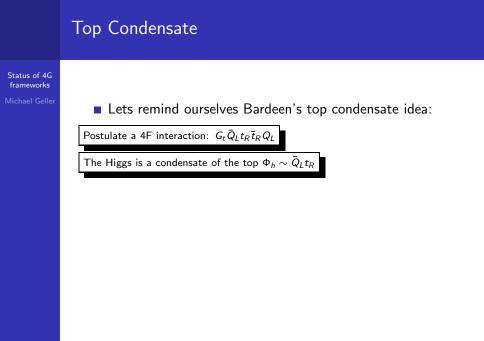
The SM4 is excluded!

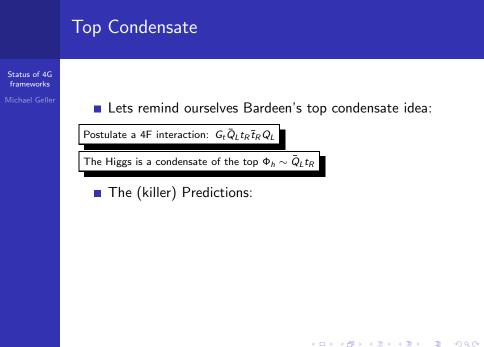
- The SM4 Higgs is not compatible with 125 GeV LHC results.
- \blacksquare The bounds on the 4th generation quarks in the SM4 reach the perturbative limit $\sim 600 \, GeV$
- Could be evaded via extended Higgs sectors.

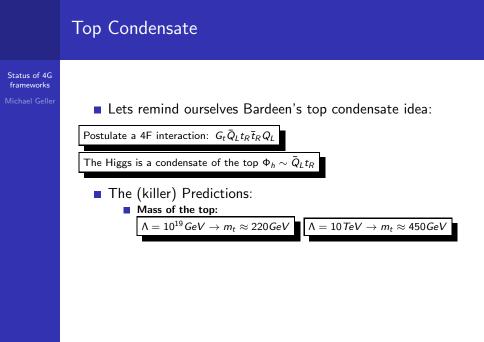
Opening Notes

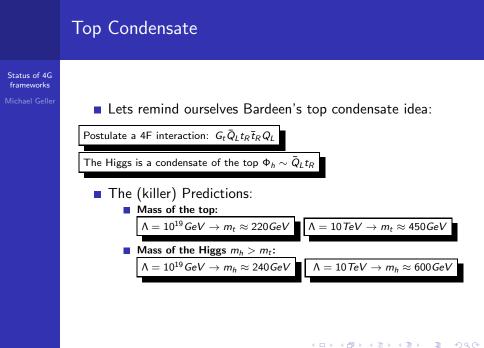
Status of 4G frameworks Michael Gelle

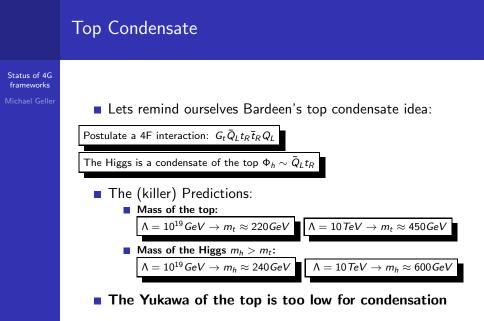
- In the SM4 the yukawa terms reach a landau-pole at the TeV scale
 - Strong dynamics
 - Dynamical electro-weak symmetry breaking

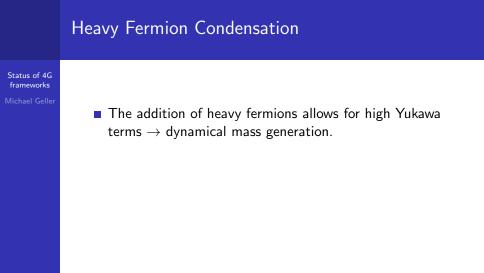

The SM4 is excluded!


- The SM4 Higgs is not compatible with 125 GeV LHC results.
- \blacksquare The bounds on the 4th generation quarks in the SM4 reach the perturbative limit $\sim 600 \, GeV$
- Could be evaded via extended Higgs sectors.
- Vector like quarks are not excluded and they appear in a plethora of models:
 - Little Higgs Models: N. Arkani-Hamed, A. Cohen, E. Katz, and A. Nelson, JHEP 0207 (2002)
 - Top Seesaw: B. A. Dobrescu and C. T. Hill, Phys. Rev. Lett. 81 (1998)






<ロト < 部ト < 言ト < 言ト 言 の Q (~ 3/14



Heavy Fermion Condensation Status of 4G frameworks

Status of 4G frameworks Michael Geller

• The addition of heavy fermions allows for high Yukawa terms \rightarrow dynamical mass generation.

4/14

The resulting spectrum must include a heavy Higgs $(m_h > m_f)$

- The addition of heavy fermions allows for high Yukawa terms → dynamical mass generation.
- The resulting spectrum must include a heavy Higgs $(m_h > m_f)$
- A light Higgs must also be present, possibly a pseudo Nambu-Goldstone boson in the full symmetry breaking picture.

Status of 4G frameworks Michael Geller

- The addition of heavy fermions allows for high Yukawa terms → dynamical mass generation.
- The resulting spectrum must include a heavy Higgs $(m_h > m_f)$
- A light Higgs must also be present, possibly a pseudo Nambu-Goldstone boson in the full symmetry breaking picture.

イロト 不得下 イヨト イヨト 二日

4/14

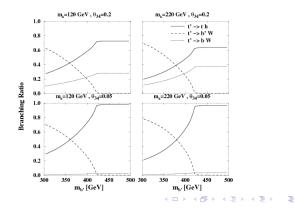
The resulting picture: 2 Higgs doublets

- The addition of heavy fermions allows for high Yukawa terms \rightarrow dynamical mass generation.
- The resulting spectrum must include a heavy Higgs $(m_h > m_f)$
- A light Higgs must also be present, possibly a pseudo Nambu-Goldstone boson in the full symmetry breaking picture.
- The resulting picture: 2 Higgs doublets
 - Φ_h which couples to the 4G (chiral or Vector-like)
 - Φ_{ℓ} which is SM-like

4G2HDM: The Model

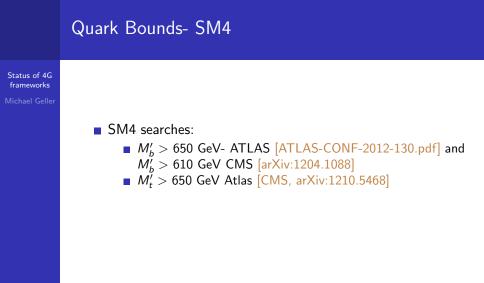
Status of 4G frameworks Michael Geller Basic Idea: In the EW basis

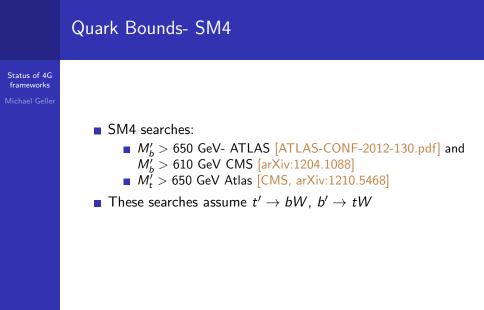
- Φ_h couples to the heavy fermions.
- Φ_{ℓ} couples to all the other (light) fermions.

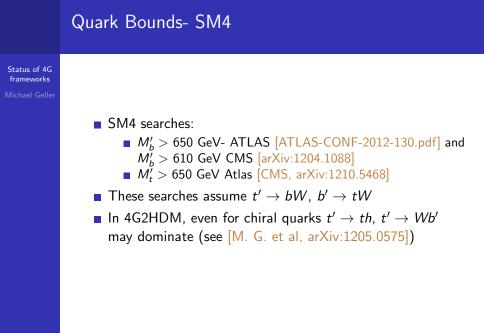

$$L_{Y} = -\overline{Q}_{L} \left(\Phi_{\ell} F \begin{pmatrix} d_{R} \\ s_{R} \\ b_{R} \\ 0 \end{pmatrix} + \Phi_{h} F \begin{pmatrix} 0 \\ 0 \\ 0 \\ b_{R}' \end{pmatrix} \right)$$
$$- \overline{Q}_{L} \left(\tilde{\Phi}_{\ell} G \begin{pmatrix} u_{R} \\ c_{R} \\ t_{R} \\ 0 \end{pmatrix} + \tilde{\Phi}_{h} G \begin{pmatrix} 0 \\ 0 \\ 0 \\ t_{R}' \end{pmatrix} \right) + h.c$$

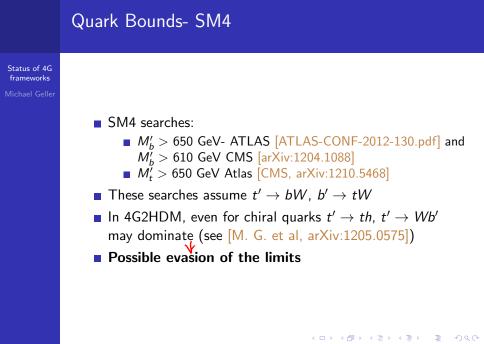
If the new fermions are Vector-like, additional terms could be present in the form: $\overline{Q}_R \Phi_h t_L$

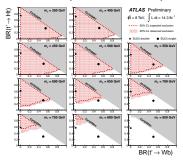
Quark Phenomenology in 4G2HDM


Status of 4G frameworks


- The masses of chiral quarks are bound by unitarity. For $m_{t'} > 600 GeV$ the Yukawa couplings blow up.
- For Vector-like quarks, mass terms $m\overline{Q_R}Q_L$ are allowed. These mass terms can push the spectrum up, without changing the Yukawa terms.
- Both chiral and vector-like quarks have model-dependent decay patterns: e.g. $t' \rightarrow th$, $t' \rightarrow wb$ and $t' \rightarrow Zt$



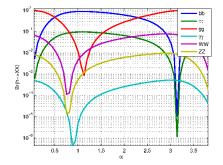

Quark Bounds- SM4



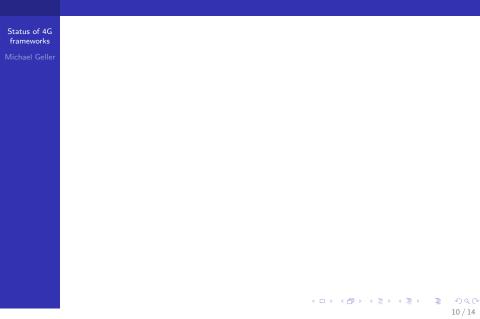
Quark Bounds- model independent

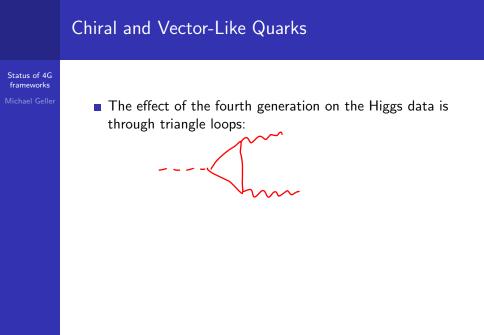
Status of 4G frameworks Michael Geller

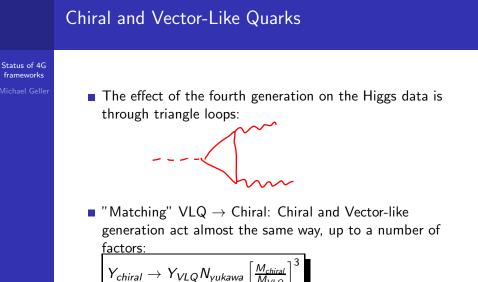
New model-independent searches start to close the window for chiral quarks (and light VLQ):


ATLAS-CONF-2013-018

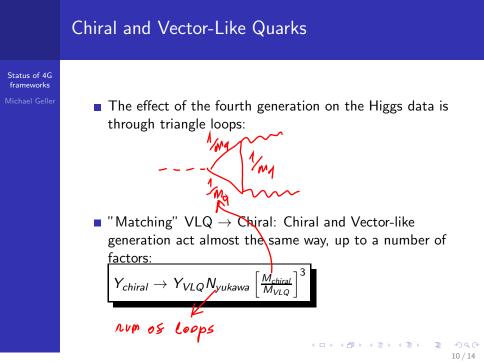
- Still possible evasion if \rightarrow smaller $Br(h \rightarrow bb)$ due to increased $h \rightarrow gg, h \rightarrow invisible$.
- Data seems to point in the heavy VLQ direction.


8/14


Higgs Phenomenology


- Three neutral scalars: *h*,*H* and *A*
- New couplings: *Hff*, *HVV* couplings are a function of tan β and α.

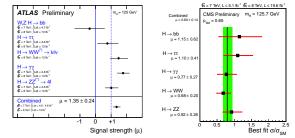
Chiral and Vector-Like Quarks



イロト 不得 トイヨト イヨト

10/14

$$Y_{chiral} o Y_{VLQ} N_{yukawa} \left[rac{M_{chiral}}{M_{VLQ}}
ight]^3$$

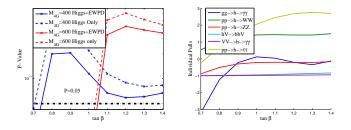

Higgs Data

Status of 4G frameworks Michael Gelle

CMS and ATLAS reported evidence for a 125 GeV Scalar.We use the reported signal strength for our analysis:

$$\mu_{XX} = \frac{\sigma \left(pp/p\overline{p} \to h \to XX \right)_{Observed}}{\sigma \left(pp/p\overline{p} \to h \to XX \right)_{SM}}$$

The latest data:

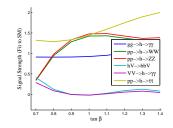

[ATLAS Collaboration, ATLAS-CONF-2013-034.pdf] [CMS Collaboration, CMS-PAS-HIG-13-005.]

• We further split $gg \to h \to \gamma\gamma$ and $VV \to h \to \gamma\gamma$ (Dijet tagged)

Status of 4G frameworks Michael Geller

Optimized P values:

The Individual Channels:

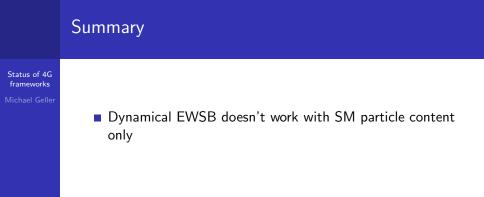


• The lightest scalar *h* in the 4G2HDM is consistent with both the Higgs results and EWPD for tan $\beta \sim 1$ and $M_{4G} = 400,600 \, GeV$.

Predictions

Status of 4G frameworks • With more statistics: deviations from the SM:

- A smaller signal in the electroweak production channels $VV \rightarrow h$, $pp \rightarrow hV$: ~ 0.2 the SM value.
- \blacksquare An increased production in the $h \rightarrow \tau \tau$ channel: \sim 1.5 the SM value



The other neutral scalars:

- The CP-even H scalar is excluded up to 500 GeV
- The CP-odd A can be as light as 130 GeV with no contradiction to the data.

13/14

	Summary	
Status of 4G frameworks Michael Geller		
		< 口 > < 酉 > < 至 > < 至 > 、 至 → ○ Q ()

- Dynamical EWSB doesn't work with SM particle content only
- Need New Heavy Quarks: Chiral or Vector like (to avoid direct limits)

- Dynamical EWSB doesn't work with SM particle content only
- Need New Heavy Quarks: Chiral or Vector like (to avoid direct limits)
- The dynamical Higgs is too heavy- need a "light" doublet

Summary

- Dynamical EWSB doesn't work with SM particle content only
- Need New Heavy Quarks: Chiral or Vector like (to avoid direct limits)
- The dynamical Higgs is too heavy- need a "light" doublet
- 2HDM with heavy quarks- fits the Higgs signals

Summary

- Dynamical EWSB doesn't work with SM particle content only
- Need New Heavy Quarks: Chiral or Vector like (to avoid direct limits)
- The dynamical Higgs is too heavy- need a "light" doublet
- 2HDM with heavy quarks- fits the Higgs signals
- Deviations in the EW production and $\tau\tau$ channels

Summary

Status of 4G frameworks Michael Geller

redictions

- Dynamical EWSB doesn't work with SM particle content only
- Need New Heavy Quarks: Chiral or Vector like (to avoid direct limits)
- The dynamical Higgs is too heavy- need a "light" doublet
- 2HDM with heavy quarks- fits the Higgs signals
- **Deviations in the EW production and** $\tau\tau$ channels
- Other scalars: $M_H > 500$ GeV while the Pseudoscalar could be as light as 130 GeV