Theoretical motivations for W/Z ratio at large boson transverse momentum

Sarah Alam Malik The Rockefeller University

In collaboration with Graeme Watt, arXiv:1304.2424

Outline

- Explain motivation for a precise measurement of the W/Z ratio at large boson p_T as a means of constraining the $Z \rightarrow v v$ background
- Dependence of W and Z cross sections vs p_T on the flavor of the initial state partons
- Study the behavior of the W+/W-, W+/Z, W-/Z, and W/Z ratios as a function of boson p_T and on the jet multiplicity.
- Study the theoretical uncertainties on these ratios from;
 - Higher order QCD and EWK corrections
 - choice of PDF
- Investigate whether a measurement of these ratios has the potential to constrain PDFs

Motivation

- Many searches for physics beyond the SM involve production of new particles that can only be inferred from missing transverse energy (SUSY, Extra dimensions, WIMPs etc)
- $Z \rightarrow v v + jets$ is dominant background in many searches for new physics that involve jets and missing transverse energy

Searches for Large Extra Dimensions and dark matter, up to 70% of the background is from Z $\rightarrow v v$ +jet events

Data-driven methods to estimate Z-->vv+jets

Data-driven methods to estimate Z-->vv+jets

- Fully reconstructable decay
- Clean, low background
- Theoretical input : ratio of branching fractions
- $Z {\rightarrow} \nu \; \nu / Z {\rightarrow} II$, well known
- Cons: low statistics

- Higher statistics
- But also more background from ttbar etc
- Theoretical input : ratio of W/Z cross section

- Higher statistics
- Theoretical input : ratio of Z/γ but this has large theoretical uncertainties. Studied in arXiv: 1106.1423, arXiv:1206.6064, arXiv:1107.2803. Currently, QCD uncertainties < 10%, EWK < 15%.

Uncertainties on background estimates

Relative systematic uncertainties (in%) for all signal regions (ATLAS, <u>arXiv:1210.4491</u>)

Source	SR1	SR2	SR3	SR4
$JES/JER/E_{T}^{miss}$	1.0	2.6	4.9	5.8
MC Z/W modelling	2.9	2.9	2.9	3.0
MC statistical uncertainty	0.5	1.4	3.4	8.9
$1-f_{ m EW}$	1.0	1.0	0.7	0.7
Muon scale and resolution	0.03	0.02	0.08	0.61
Lepton scale factors	0.4	0.5	0.6	0.7
Multijet BG in electron CR	0.1	0.1	0.3	0.6
Di-boson, top, multijet, non-collisions	0.8	0.7	1.1	0.3
Total systematic uncertainty	3.4	4.4	6.8	11.1
Total data statistical uncertainty	0.5	1.7	4.3	11.8

Uncertainty on Z/W modelling taken from a comparison of ALPGEN and SHERPA

Ratio of W/Z vs jet p_T

ATLAS, arXiv:1108.4908

- W/Z ratio vs jet p⊤ threshold measured by ATLAS
- Searches for SUSY typically use variables like the missing H_T which is a vector sum of the p_T of jets above a certain threshold and numerically close to the boson рт.

Outline

- Explain motivation for a precise measurement of the W/Z ratio at large boson p_T as a means of constraining the $Z \rightarrow v v$ background
- Dependence of W and Z cross sections vs p_T on the flavor of the initial state partons
- Study the behavior of the W+/W-, W+/Z, W-/Z, and W/Z ratios as a function of boson p_T and jet multiplicity
- Study the theoretical uncertainties on these ratios from;
 - Higher order QCD and EWK corrections
 - choice of PDF
- Investigate whether a measurement of these ratios has the potential to constrain PDFs

Used Madgraph at LO with N= 0,1,2,3,4 jets matched to Pythia with CTEQ6L1 PDFs

MCFM for the V+jet process with MSTW08 NLO PDFs

Jets defined as anti-k_T with $p_T > 10$, $|\eta| < 5$.

Flavor decomposition

(c) W^{\pm}

Dependence on jet multiplicity

(d) W^{\pm}/Z^{0}

(c) W^{-}/Z^{0}

250 30 Boson p_T (GeV)

Ratios of boson p_T distributions : LO vs NLO

Compare MCFM LO vs NLO
with dynamic choice for
renormalisation/factorisation
scale, varied up and down by
factor 2.

- Ratios have very small
 dependence on higher order
 corrections and scale choice
- Almost completely cancels in
- W+/W-, 1% or so in W/Z ratios

(a) W^+/W^-

(b) W^+/Z^0

Comparing MCFM with Madgraph+Pythia

(c) W^{-}/Z^{0}

Dependence on PDFs

Dependence on PDFs

Potential PDF constraints from W⁺/W⁻ ratio

Correlation between ratio of u/d PDFs at Q = 100 GeV and Ratio of (W⁺ + jet) / (W⁻ + jet) at the LHC with \sqrt{s} = 8 TeV using MCFM at NLO with $\mu_R = \mu_F = \sqrt{M^2 + p_T^2}$

x range corresponding to strong correlation moves to higher x values (from x~0.1 to ~0.2-0.3) as boson p_T is increased

Potential PDF constraints from W⁺/W⁻ ratio

• Measurement vs boson p_T complementary to measurement vs η_I .

- Effect of large virtual electroweak Sudakov logarithms can reach up to a few tens of percent for $d\sigma/dp_T$ at very large boson p_T .
- Effect cancels almost completely in the W^+/W^- ratio.
- Decrease in W⁺/Z and W⁻/Z ratios by 4% at boson $p_T = 1$ TeV and by 7% at $p_T = 2$ TeV at the 14 TeV LHC. Smaller shift for boson p_T values considered in this study.
- Electroweak corrections on W/Z are smaller than γ /Z ratio, which increases by

13% at boson $p_T = 1$ TeV and by 22% at $p_T = 2$ TeV at the 14 TeV LHC.

- For sufficiently inclusive measurements, potential partial cancellations from real emission of soft W and Z bosons.
- Effect of real EWK corrections and extent of cancellation would need to be studied for realistic experiments cuts used in measurement.

Summary

- Theoretical ratio W/Z is a key ingredient in the data-driven estimates of the $Z \rightarrow v v$ +jets background in searches for new physics.
- Presented detailed study of the theoretical uncertainties on the 4 ratios; W⁺/W⁻, W⁺/Z, W⁻/Z and W/Z as a function of the boson p_T .
- Theoretical QCD and EWK uncertainties on W/Z ratio small, QCD uncertainties < \sim 5%.

• W⁺/W⁻ ratio measured as a function of boson p_T has negligible uncertainties from higher order QCD and EWK, hence can constrain u/d ratio in a complementary region of x to the W charge asymmetry measured as a function of η_i .

Backup

