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Renormalization-group Flow from UV to IR; Types of IR
Behavior and Role of IR Fixed Point

Consider an asymptotically free, vectorial gauge theory with gauge group G and Nf

massless fermions in representation R of G.

Asymptotic freedom ⇒ theory is weakly coupled, properties are perturbatively
calculable for large Euclidean momentum scale µ in deep ultraviolet (UV).

The question of how this theory flows from large µ in the UV to small µ in the infrared
(IR) is of fundamental field-theoretic significance and motivates a detailed study of this
evolution.

For some fermion contents, the theory may have an exact or approximate IR fixed point
(zero of β), with a number of interesting consequences.

Denote running gauge coupling at scale µ as g = g(µ), and let
α(µ) = g(µ)2/(4π) and a(µ) = g(µ)2/(16π2) = α(µ)/(4π).



The dependence of α(µ) on µ is described by the β function

βα ≡
dα

dt
= −2α

∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓα
ℓ ,

where t = lnµ, ℓ = loop order of the coeff. bℓ, and b̄ℓ = bℓ/(4π)ℓ.

Coeffs. b1 and b2 in β are indep. of regularization/renormalization scheme, while bℓ for
ℓ ≥ 3 are scheme-dep.

Asymptotic freedom means b1 > 0, so β < 0 for small α(µ), in neighborhood of UV
fixed point (UVFP) at α = 0.

As the scale µ decreases from large values, α(µ) increases. Denote αcr as minimum
value for formation of bilinear fermion condensates and resultant spontaneous chiral
symmetry breaking (SχSB).



Two generic possibilities for β and resultant UV to IR flow:

• β has no IR zero, so as µ decreases, α(µ) increases, eventually beyond the
perturbatively calculable region. This is the case for QCD.

• β has a IR zero, αIR, so as µ decreases, α → αIR. In this class of theories, there
are two further generic possibilities: αIR < αcr or αIR > αcr.

If αIR < αcr, the zero of β at αIR is an exact IR fixed point (IRFP) of the renorm.
group (RG); as µ → 0 and α → αIR, β → β(αIR) = 0, and the theory becomes
exactly scale-invariant with nontrivial anomalous dimensions (Caswell, Banks-Zaks).

If β has no IR zero, or an IR zero at αIR > αcr, then as µ decreases through a scale
Λ, α(µ) exceeds αcr and SχSB occurs, so fermions gain dynamical masses ∼ Λ.

If SχSB occurs, then in low-energy effective field theory applicable for µ < Λ, one
integrates these fermions out, and β function becomes that of a pure gauge theory,
which has no IR zero. Hence, if β has a zero at αIR > αcr, this is only an approx.
IRFP of RG.



If αIR is only slightly greater than αcr, then, as α(µ) approaches αIR, since
β = dα/dt → 0, α(µ) varies very slowly as a function of the scale µ, i.e., there is
approximately scale-invariant, i.e. dilatation-invariant behavior.

Let Λ∗ = scale where α(µ) grows to a value only slightly less than αcr. The approx.
scale-invariant behavior occurs for Λ < µ < Λ∗.

SχSB at Λ also breaks the approx. dilatation symmetry, plausibly leading to a resultant
approx. NGB, the dilaton. This is not massless, since β(αcr) is small but nonzero.

Denote the n-loop β fn. as βnℓ and the IR zero of βnℓ as αIR,nℓ.



At the n = 2 loop level,

αIR,2ℓ = −
4πb1

b2

which is physical for b2 < 0. One-loop coefficient b1 is

b1 =
1

3
(11CA − 4NfTf)

(Gross, Wilczek, Politzer, ’t Hooft)

where CA ≡ C2(G) is quadratic Casimir invariant, Tf ≡ T (R) is trace invariant.
Focus here on G = SU(N).

Asymp. freedom requires Nf < Nf,b1z, where

Nf,b1z =
11CA

4Tf

e.g., for R = fund. Nf < (11/2)N .



Two-loop coeff. b2 is (with Cf ≡ C2(R))

b2 =
1

3

[

34C2
A − 4(5CA + 3Cf)Nf Tf

]

(Caswell, Jones)

For small Nf , b2 > 0; b2 decreases as fn. of Nf and vanishes with sign reversal at
Nf = Nf,b2z, where

Nf,b2z =
34C2

A

4Tf(5CA + 3Cf)
.

For arbitrary G and R, Nf,b2z < Nf,b1z, so there is always an interval in Nf for
which β has an IR zero, namely

I : Nf,b2z < Nf < Nf,b1z

For R = fund.

I :
34N 3

13N 2 − 3
< Nf <

11N

2
e.g., for SU(2), I is 5.55 < Nf < 11; for SU(3), I is 8.05 < Nf < 16.5. As
N → ∞, I is 2.62N < Nf < 5.5N . (Here and below, evaluate expressions in R,
but understand that physical values of Nf are nonnegative integers.)



As Nf decreases from the upper to lower end of interval I, αIR increases. Denote

Nf = Nf,cr at αIR = αcr

Value of Nf,cr is of fundamental importance, since it separates the (zero-temp.)
chirally symmetric and broken IR phases.

Longstanding effort to determine Nf,cr for various N and R, using both continuum
and lattice methods.

Approx. soln. of Schwinger-Dyson eq. for fermion propagator suggested Nf,cr ∼ 4N .
Given the strong-coupling involved, this is only rough estimate.



Higher-Loop Corrections to UV → IR Evolution of Gauge
Theories

Because of this strong-coupling physics, one should calculate the IR zero in β, αIR,
and resultant value of γ evaluated at αIR to higher-loop order. We have done this to
3-loop and 4-loop order in Ryttov and Shrock, PRD83, 056011 (2011) (related work by
Gardi, Grunberg, Karliner, Pica, Sannino)

Although coeffs. in β at ℓ ≥ 3 loop order are scheme-dependent, results give a
measure of accuracy of the 2-loop calc. of the IR zero of β, and similarly with γ
evaluated at this IR zero.

We use MS scheme, for which β and γ have been calculated to 4-loops by
Vermaseren, Larin, and van Ritbergen.

The value of higher-loop calculations has been amply shown in comparison of QCD
predictions with experimental data, e.g., in MS scheme.



At 3-loop level, we use

b3 =
2857

54
C3
A + TfNf

[

2C2
f −

205

9
CACf −

1415

27
C2
A

]

+(TfNf)
2

[

44

9
Cf +

158

27
CA

]

We find that b3 < 0 for Nf ∈ I.



At this 3-loop level,

β = −
α2

2π
(b1 + b2a+ b3a

2)

so β = 0 away from α = 0 at two values,

α =
2π

b3

(

− b2 ±
√

b2
2 − 4b1b3

)

Since b2 < 0 and b3 < 0, these are

α =
2π

|b3|

(

− |b2| ∓
√

b2
2 + 4b1|b3|

)

Soln. with − sqrt is negative, hence unphysical; soln. with + sqrt is αIR,3ℓ.

N.B.: if a scheme had b3 > 0 in I, then, since b2 → 0 at lower end of I,
b2

2 − 4b1b3 < 0, so this scheme would not have a physical αIR,3ℓ in this region.



We find that the value of the IR zero decreases when calculated at the 3-loop level, i.e.,

αIR,3ℓ < αIR,2ℓ

Proof:

αIR,2ℓ − αIR,3ℓ =
4πb1

|b2|
−

2π

|b3|
(−|b2| +

√

b2
2 + 4b1|b3| )

=
2π

|b2b3|

[

2b1|b3| + b2
2 − |b2|

√

b2
2 + 4b1|b3|

]

The expression in square brackets is positive if and only if

(2b1|b3| + b2
2)

2 − b2
2(b

2
2 + 4b1|b3|) > 0

This difference is equal to the pos.-def. quantity 4b2
1b

2
3, which proves the inequality.

Since the existence of the IR zero in β at 2-loop level is scheme-independent, one may
require that a scheme should maintain this property to higher-loop order, and hence
that b3 < 0 for Nf ∈ I. The inequality αIR,3ℓ < αIR,2ℓ holds in all such schemes,
and is thus more general than just for MS (Shrock, PRD in press, arXiv:1301.3209).



The 4-loop β function is

β = −
α2

2π
(b1 + b2a+ b3a

2 + b4a
3)

so β has three zeros away from the origin. We determine the smallest positive real zero
as αIR,4ℓ.

Going from 3-loop to 4-loop level, there is a slight change in the value of the IR zero,
but this change is smaller than the decrease from 2-loops to 3-loops, so

αIR,4ℓ < αIR,2ℓ

Our result of smaller fractional change in value of IR zero of β at higher-loop order
agrees with expectation that calculating to higher loop order should give more stable
result.



Some numerical values of αIR,nℓ at the n = 2, 3, 4 loop level for SU(2), SU(3) and
fermions in fund. rep.

N Nf αIR,2ℓ αIR,3ℓ αIR,4ℓ
2 7 2.83 1.05 1.21
2 8 1.26 0.688 0.760
2 9 0.595 0.418 0.444
2 10 0.231 0.196 0.200

3 10 2.21 0.764 0.815
3 11 1.23 0.578 0.626
3 12 0.754 0.435 0.470
3 13 0.468 0.317 0.337
3 14 0.278 0.215 0.224
3 15 0.143 0.123 0.126
3 16 0.0416 0.0397 0.0398

We have performed the corresponding higher-loop calculations for SU(N ) gauge
theories with Nf fermions in the adjoint, symmetric and antisymmetric rank-2 tensor
representations. The general result αIR,3ℓ < αIR,2ℓ applies. Details are in our papers.



The anomalous dimension γm ≡ γ for the fermion bilinear is

γ =

∞
∑

ℓ=1

cℓa
ℓ =

∞
∑

ℓ=1

c̄ℓα
ℓ

where c̄ℓ = cℓ/(4π)ℓ is the ℓ-loop coeff. The one-loop coeff. c1 = 6Cf is
scheme-independent, the cℓ with ℓ ≥ 2 are scheme-dependent and have been
calculated up to 4-loop level in MS scheme.

It is of interest to calculate γ at the exact IRFP in IR-conformal phase and the approx.
IRFP in phase with SχSB.

Denote γ calculated to n-loop (nℓ) level as γnℓ and, evaluated at the n-loop value of
the IR zero of β, as

γIR,nℓ ≡ γnℓ(α = αIR,nℓ)



N.B.: In the IR chirally symmetric phase, an all-order calc. of γ evaluated at an
all-order calc. of αIR would be an exact property of the theory

In the χ bk. phase, just as the IR zero of β is only an approx. IRFP, so also, the γ is
only approx., describing the running of ψ̄ψ and the dynamically generated running
fermion mass near the zero of β having large-momentum behavior
Σ(k) ∼ Λ(Λ/k)2−γ.

In both phases, γ is bounded above as γ < 2. At 2-loop level we find γIR,2ℓ =

Cf(11CA − 4TfNf)[455C2
A + 99CACf + (180Cf − 248CA)TfNf + 80(TfNf)

2]

12[−17C2
A + 2(5CA + 3Cf)TfNf ]2



Illustrative numerical values of γIR,nℓ for SU(2) and SU(3) at the n = 2, 3, 4 loop
level and fermions in the fund. rep.:

N Nf γIR,2ℓ γIR,3ℓ γIR,4ℓ
2 8 0.752 0.272 0.204
2 9 0.275 0.161 0.157
2 10 0.0910 0.0738 0.0748

3 11 1.61 0.439 0.250
3 12 0.773 0.312 0.253
3 13 0.404 0.220 0.210
3 14 0.212 0.146 0.147
3 15 0.0997 0.0826 0.0836
3 16 0.0272 0.0258 0.0259

Equivalently, we show plots of γ as fn. of Nf for SU(2) and SU(3):



Figure 1: n-loop anomalous dimension γIR,nℓ at αIR,nℓ for SU(2) with Nf fermions in fund. rep. (i) blue:

γIR,2ℓ; (ii) red: γIR,3ℓ; (iii) brown: γIR,4ℓ.



Figure 2: n-loop anomalous dimension γIR,nℓ at αIR,nℓ for SU(3) with Nf fermions in fund. rep: (i) blue:

γIR,2ℓ; (ii) red: γIR,3ℓ; (iii) brown: γIR,4ℓ.



A necessary condition for a perturb. calc. to be reliable is that higher-order contribs. do
not modify the result too much.

One sees from the tables and figures that the 3-loop and 4-loop results are closer to
each other for a larger range of Nf than the 2-loop and 3-loop results.

So our higher-loop calcs. of αIR and γ allow us to probe the theory reliably down to
smaller values of Nf and thus stronger couplings, closer to Nf,cr.

We have also performed these higher-loop calculations for larger fermion reps. R. In
general, we find that, for a given N , R, and Nf , the values of γIR,nℓ calculated to
3-loop and 4-loop order are smaller than the 2-loop value.



Comparisons with Lattice Measurements

Consider SU(3) with Nf = 12, R = fund. rep. No consensus yet as to whether this
theory is chirally symmetric or broken in the IR. Appelquist et al. (LSD); Deuzeman et
al; Hasenfratz et al.; DeGrand et al.; Aoki et al. find IR-χ sym. while Jin and
Mawhinney and Kuti et al. find SχSB.

For either case we can compare our γ calculation with the lattice measurements. From
our table above,

γIR,2ℓ = 0.77, γIR,3ℓ = 0.31, γIR,4ℓ = 0.25

Some lattice results (N.B.: some error estimates do not include all systematic
uncertainties)

γ = 0.414 ± 0.016 (Appelquist, Fleming, Lin, Neil, Schaich, PRD 84, 054501
(2011), arXiv:1106.2148, analyzing data of Kuti et al., PLB 703, 348 (2011),
arXiv:1104.3124)

γ ∼ 0.35 (DeGrand, PRD 84, 116901 (2011), arXiv:1109.1237, also analyzing data of
Kuti et al.)



0.2 <∼ γ <∼ 0.4 (Fodor, Holland, Kuti, Nogradi, Schroeder, Wong (method-dep.),
arXiv:1205.1878, arXiv:1211.3548, 1211.6164)

γ = 0.4 − 0.5 (Y. Aoki et al., (LatKMI) PRD 86, 054506 (2012), arXiv:1207.3060)

γ = 0.27 ± 0.03 (Hasenfratz et al., PoS(Lattice 2012)034, arXiv:1207.7162)

So here the 2-loop value is larger than, and the 3-loop and 4-loop values closer to,
these lattice measurements. Thus, our higher-loop calcs. of γ yield better agreement
with these lattice measurements than two-loop calc.

The possibility that γ ∼ O(1) near the lower end of interval I remains.

We have carried out comparisons of our calculations with lattice measurements for
SU(2) and also for SU(2) and SU(3) with larger fermion reps.



Further Higher-Loop Structural Properties of β

The UV to IR flow is controlled by β in the interval α = 0 to α → αIR. In addition
to αIR,nℓ, further structural properties of interest include the magnitude and location
of the minimum in βnℓ and the derivative β′

IR,nℓ ≡ dβnℓ/dα evaluated at αIR,nℓ.

In quasi-scale-invariant case where αIR >∼ αcr, dilaton mass relevant in dynamical
EWSB models depends on how small β is for α near to αIR and hence, at n-loop
order, on β′

IR,nℓ, via the series expansion of βnℓ around αIR,nℓ,

βnℓ(α) = β′
IR,nℓ (α− αIR,nℓ) + O

(

(α− αIR,nℓ)
2
)

We have calculated these structural properties analytically and numerically (Shrock,
PRD, in press, arXiv:1301.3209).

We find, e.g., that β′
IR,nℓ decreases as n increases from n = 2 to higher-loop order,

as is evident in the following table:



N Nf β′
IR,2ℓ β′

IR,3ℓ β′
IR,4ℓ

2 7 1.20 0.728 0.677
2 8 0.400 0.318 0.300
2 9 0.126 0.115 0.110
2 10 0.0245 0.0239 0.0235

3 10 1.52 0.872 0.853
3 11 0.720 0.517 0.498
3 12 0.360 0.2955 0.282
3 13 0.174 0.156 0.149
3 14 0.0737 0.0699 0.0678
3 15 0.0227 0.0223 0.0220
3 16 0.00221 0.00220 0.00220

Illustrative figures for SU(2) with Nf = 8 fermions and SU(3) with Nf = 12
fermions:
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Figure 3: βnℓ for SU(2), Nf = 8, at n = 2, 3, 4 loops. From bottom to top, curves are β2ℓ, β4ℓ, β3ℓ.
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Figure 4: βnℓ for SU(3), Nf = 12, at n = 2, 3, 4 loops. From bottom to top, curves are β2ℓ, β4ℓ, β3ℓ.



Interesting property: for R = fund. rep., αIR,nℓN , γIR,nℓ, and other structural
properties of βnℓ are similar in theories with different values of N and Nf if they have
equal or similar values of r = Nf/N .

This motivates a study of the UV to IR evolution of an SU(N ) gauge theory with Nf

fermions in the fund. rep. in the ’t Hooft-Veneziano limit N → ∞, Nf → ∞ with
r ≡ Nf/N fixed and α(µ)N independent of N . We have carried out this study in
arXiv:1302.5434.

We find that corrections to this limit are strongly suppressed, like 1/N 2, leading to a
rapid approach to the asymptotic expressions for various quantities.

This provides a unified quantitative understanding of the similarities in UV to IR
evolution of SU(N ) theories with different N and Nf but similar r.

Various quantities are calculated as fns. of r; for example, for γIR,nℓ:



r γ
IR,2ℓ

γ
IR,3ℓ

γ
IR,4ℓ

3.6 1.853 0.5201 0.3083
3.8 1.178 0.4197 0.3061
4.0 0.7847 0.3414 0.2877
4.2 0.5366 0.2771 0.2664
4.4 0.3707 0.2221 0.2173
4.6 0.2543 0.1735 0.1745
4.8 0.1696 0.1294 0.1313
5.0 0.1057 0.08886 0.08999
5.2 0.05620 0.05123 0.05156
5.4 0.01682 0.01637 0.01638



Higher-Loop Calculations of UV to IR Evolution for an
N = 1 Supersymmetric Gauge Theory

It is of interest to carry out a similar analysis in an asymptotically free N = 1
supersymmetric gauge theory with vectorial chiral superfield content Φi, Φ̃i,
i = 1, ..., Nf in the R, R̄ reps., respectively.

We have done this in Ryttov and Shrock, Phys. Rev. D 85, 076009 (2012),
arXiv:1202.1297; and Shrock, Phys. Rev. D, in press, arXiv:1301.3209; arXiv:1302.5434.

An appeal of this analysis: exact results on the IR properties of the theory are known.

We find that the perturb. calc. slightly overestimates the value of Nf,cr, i.e., slightly
underestimates the size of the IR-conformal phase.



Study of Scheme-Dependence in Calculation of IR Fixed
Point

It is useful to study effects of scheme transformations on αIR,nℓ for n ≥ 3 where the
coeffs. in β are scheme-dependent. We have done this in Ryttov and Shrock, PRD 86,
065032 (2012), arXiv:1206.2366; PRD 86, 085005 (2012), arXiv:1206.6895.

A scheme transformation (ST) is a map between α and α′ or equivalently, a and a′,
where a = α/(4π) of the form

a = a′f(a′)

with f(0) = 1 to keep UV properties unchanged. Write

f(a′) = 1 +

smax
∑

s=1

ks(a
′)s = 1 +

smax
∑

s=1

k̄s(α
′)s ,

where k̄s = ks/(4π)s, and smax may be finite or infinite. Then

βα′ = −2α′
∞
∑

ℓ=1

b′
ℓ(a

′)ℓ = −2α′
∞
∑

ℓ=1

b̄′
ℓ(α

′)ℓ ,

where b̄′
ℓ = b′

ℓ/(4π)ℓ.



We calculate the b′
ℓ as functions of the bℓ and ks. At 1-loop and 2-loop, this yields the

well-known results
b′

1 = b1 , b′
2 = b2

We find
b′

3 = b3 + k1b2 + (k2
1 − k2)b1 ,

b′
4 = b4 + 2k1b3 + k2

1b2 + (−2k3
1 + 4k1k2 − 2k3)b1

b′
5 = b5 + 3k1b4 + (2k2

1 + k2)b3 + (−k3
1 + 3k1k2 − k3)b2

+(4k4
1 − 11k2

1k2 + 6k1k3 + 4k2
2 − 3k4)b1

etc. at higher-loop order.

We construct an explicit ST that, in the vicinity of a UVFP, to the ’t Hooft scheme
where b′

ℓ = 0 for ℓ ≥ 3

We point out that a physically acceptable ST must satisfy several conditions, such as
mapping a real positive α to a real positive α′, which are easily satisfied in the vicinity
of a UVFP, but can be quite restrictive at an IRFP.



For example, consider the ST (dependent on a parameter r)

a =
tanh(ra′)

r

with inverse

a′ =
1

2r
ln

(

1 + ra

1 − ra

)

This is acceptable for small a, but if a > 1/r, i.e., α > 4π/r, it maps a real α to a
complex α′ and hence is physically unacceptable. For, say, r = 8π, this pathology can
occur at a moderate α = 0.5.

We have constructed several STs that are acceptable at an IRFP and have studied
scheme dependence of the IR zero of βnℓ using these. For example,

a =
sinh(ra′)

r
with inverse

a′ =
1

r
ln

[

ra+
√

1 + (ra)2

]

We find reasonably small scheme-dependence for moderate αIR.



Conclusions

• Understanding the UV to IR evolution of an asymptotically free gauge theory and
the nature of the IR behavior is of fundamental interest and can be relevant to
exploring BSM physics

• Our higher-loop calculations give new information on this UV to IR flow and on
determination of αIR,nℓ and γIR,nℓ; valuable to compare and combine results from
higher-loop continuum calcs. with lattice measurements

• Results on the limit N → ∞, Nf → ∞ with Nf/N fixed provide understanding
of similarities in UV to IR flows in theories with different N and Nf but similar r.

• Higher-loop study of UV to IR flow for supersymmetric gauge theories gives further
insights

• We have investigated effects of scheme-dependence of IR zero in higher-loop
calculations and have pointed out that scheme transformations are subject to
conditions that are easily satisfied at a UVFP but are a significant constraint at an
IRFP


