Results on Electroweak Precision Measurements from CMS

Norbert Neumeister

Department of Physics Purdue University On behalf of the CMS Collaboration

Exploring Fundamental Interactions in the Higgs Era

Brookhaven Forum 2013, May 1-3, 2013, Upton, NY

Outline

- Introduction
- Electroweak measurements
 - Inclusive W and Z cross section measurements
 - Cross section ratios
 - W lepton charge asymmetry
 - Drell-Yan differential and double-differential cross section
 - Z/γ^* +jets cross section
 - W/Z+b-jets production
 - Diboson production
 - Anomalous gauge couplings
- Summary

Data Collected

CMS Integrated Luminosity, pp

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Norbert Neumeister, Purdue University

1 OCt

Date (UTC)

1 NON 1 Dec

1 May

1 Jun 2 141

Introduction (I)

- EWK physics plays a significant role in understanding the EWSB
 - A window to new physics
- W and Z decays are special final states:
 - They are used to understand and calibrate the detector response (trigger, identification, resolution, efficiencies)
 - They are dominant signal and/or background in many searches for new particles
- Experimentally the W $\rightarrow \ell v$ and Z $\rightarrow \ell \ell$ channels are among the cleanest final states that we can exploit at hadron colliders
- We have now accurate theoretical tools at our disposal:
 - NLO MC generators (MC@NLO, POWHEG, ...). These generators should provide more accurate predictions than LO MCs for these processes (at the few percent level)
 - Integration of matrix element MCs with parton shower generators in a consistent way at NLO
 - NNLO theoretical predictions for cross section and kinematic studies are also available (FEWZ, DYNNLO, RESBOS)
 - Inclusive and differential calculation of cross sections at NNLO precision

Introduction (II)

 W and Z production at LHC proceeds at the hard scattering level and first order via collisions of a valence quark (u,d) and a sea anti-quark (Q~100 GeV):

 $u + \overline{d}(\overline{s}) \to W^+ \quad u + \overline{u} \to Z$ $d + \overline{u}(\overline{c}) \to W^- \quad d + \overline{d} \to Z$

- Since parton fractions in this process are typically 10⁻³ < x < 10⁻¹, sea-sea qq contributions are also important
- Provide access to central parameters for global EWK fit (masses, couplings, asymmetries)
- Provide powerful constraints for nonperturbative part (PDFs, tunes)

х

W & Z Production vs. \sqrt{s}

- From pQCD prediction we expect an increase of the cross section of 15 20 % from 7 to 8 TeV
- 7 TeV cross sections measured with 1% precision (with 36 pb⁻¹)
- 8 TeV results from dedicated low pile-up run early in 2012
- Measure the W/Z, W^+/W^- ratios and the 7/8 TeV ratio to test pQCD
- Good overall agreement with theory predictions at NNLO both at 7 and 8 TeV

W Cross Section

- Comparable experimental and theory uncertainty
 - 2-3% systematic and 4.4% luminosity
- Comparison with FEWZ

Norbert Neumeister, Purdue University

CMS Preliminary

W→ev

18.7 pb⁻¹ at $\sqrt{s} = 8$ TeV

Z Cross Section

CMS Preliminary Events / 1.0 GeV/c² 7 TeV and 8 TeV measurement 18.7 pb⁻¹ at $\sqrt{s} = 8$ TeV 1.0 – data 0.8 Ζ→μμ Comparison with FEWZ 0.6 CMS Preliminary 0.4 18.7 pb⁻¹ at $\sqrt{s} = 8$ TeV 0.2 NNLO, FEWZ+MSTW2008 prediction [with MSTW2008 68% CL uncertainty] × 1.13 ± 0.04 nb 60 80 100 120 $M(\mu^+\mu^-)$ [GeV/c²] Z→ee CMS Preliminary $1.10 \pm 0.02_{stat} \pm 0.05_{svst} \pm 0.05_{lumi} \text{ nb}$ GeV/c² 009 18.7 pb⁻¹ at $\sqrt{s} = 8$ TeV data Events / 1.0 Z→µµ Z→ee 500 $1.13 \pm 0.01_{stat} \pm 0.03_{svst} \pm 0.05_{lumi} \text{ nb}$ 400 300 $Z \rightarrow II (combined)$ 200 $1.12 \pm 0.01_{stat} \pm 0.02_{syst} \pm 0.05_{lumi} \text{ nb}$ 100 0.2 0.4 0.8 1.2 0.0 0.6 1.0 1.4 \approx $\sigma(pp \rightarrow Z) \times BR(Z \rightarrow II) [nb]$ CMS-PAS-SMP-12-011 100 60 80 120

Norbert Neumeister, Purdue University

 $M(e^+e^-)$ [GeV/c²]

Ratio of W and Z Cross Sections

- Cancelation of systematic errors in ratio
 - both experimental and theoretical
- W/Z ratio at 8 TeV: 1.5 sigma difference with most PDFs
- 2% experimental systematic uncertainty
- Milder tension is present in the 7 TeV measurement

Ratio of W⁺ and W⁻ Cross Sections

- Expect 2:1 ratio from valence quarks in valance-sea annihilation, diluted by sea-sea
- Ratios are not affected by luminosity uncertainty
- W⁺/W⁻ potentially sensitive to PDF
- Agrees with theory predictions
- Tested at 2% level driven by experimental systematic uncertainty

Norbert Neumeister, Purdue University

W Charge Asymmetry

- A natural extension of the inclusive measurement is the study of the W⁺/W⁻ ratio R_W, as a function of different kinematic variables
- An experimentally clean way to do it is to study the charge asymmetry as a function of the lepton pseudorapidity
- This measurement is very sensitive to PDFs as most uncertainties cancel in the ratio
 - more u-dbar than d-ubar in pp collisions: expect charge asymmetry!
- Apply similar selection as for the inclusive measurement and divide the sample in different rapidity bins

$$\eta) = \frac{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) - \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) + \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}$$

Phys. Rev. Lett. 109 (2012) 111806

First η bin in electron channel

Norbert Neumeister, Purdue University

W Charge Asymmetry

- Background contribution increases with η
- The main uncertainties are from signal/ background shape variations and energy scale
- This measurement is very sensitive to PDFs as most uncertainties cancel in the ratio
- Good agreement with NLO predictions except MSTW

 Provides significant constraint on PDF global fits

PDF model	χ2
MSTW2008NLO	5.3
CTI0W	2.1
NNPDF2.1	4.1
HERAPDFI.0	0.9

Norbert Neumeister, Purdue University

W Charge Asymmetry

ATLAS and CMS results complementary to LHCb measurements

- ATLAS, CMS: Medium, small-x region, light quarks/antiquarks
- LHCb: high rapidity data: small-x region

- NNPDF2.2: Added ATLAS and CMS W lepton asymmetry data
- Their inclusion reduces uncertainty and moves central values
- Total uncertainty reduction is significant

Z/γ* Transverse Momentum

- W and Z bosons are produced with a non-zero p_T because of quark/gluon radiation from the initial-sate partons. Probe modeling of p_T of Z boson in MC.
- Low-p_T dominated by multiple soft gluon radiation (includes perturbative effects) / intermediate p_T is dominated by first higher order corrections / high-p_T dominated by hard single gluon radiation (matrix element)
- $\sqrt{s} = 8 \text{ TeV}, L = 18.4/\text{pb}$
- Muon channel only
- PYTHIA (Z2star) is good at low p_T^Z
- Madgraph is slightly better at high p_T^Z

Drell-Yan Cross Section

- Full 7 TeV dataset is used; both dimuon and dielectron channel
- Measure the differential cross section $(I/\sigma_z)d\sigma/dM$
 - normalize differential cross sections to the cross section at the Z peak
 - performed in muon and electron channel
- Measure the double differential cross section $(1/\sigma_z)d^2\sigma/dMdY$
 - measurement directly usable to constraint PDFs
 - performed in muon channel |Y| <2.4
- Drell-Yan samples are produced with POWHEG MC generator
 - rescaled to NNLO cross section from FEWZ
- Cross section measurement per bin:

$$\sigma_{i,j} = \frac{N_{i,j}^{u}}{A_{i,j} \cdot \varepsilon_{i,j} \cdot C_{i,j} \cdot L_{\text{int}}} \quad R_{i} = \frac{1}{\sigma_{Z}} \frac{d\sigma}{dM}$$

Take advantage of the CMS detector's capabilities to measure very low mass DY

 Note: the acceptance correction is not applied for the 2D measurement

Drell-Yan Cross Section

The blue error band for the theory calculation includes the statistical error from the FEWZ calculation and 68% confidence limit (CL) PDF uncertainty combined in quadrature. The uncertainty of EWK correction including $\gamma\gamma$ initiated processes effect is added in the green error band.

Norbert Neumeister, Purdue University

Double Differential Drell-Yan Cross Section

CMS-PAS-SMP-13-003

- Measurement within the detector acceptance, to reduce the model dependence
- Performed in 24 rapidity bins between 0 and 2.4 (12 Y-bins for the highest mass bin) and 6 mass ranges: (20-30), (30,45), (45,60), (60,120), (120, 200), (200,1500) GeV
- Low mass very sensitive to PDF uncertainties
- Comparing to FEWZ + CT10 NLO and FEWZ + CT10 NNLO

Norbert Neumeister, Purdue University

Double Differential Drell-Yan Cross Section

Comparison with various NNLO PDF sets: ABKM, CT10, CT10W, HERA, JR09, MSTW2008, NNPDF

Norbert Neumeister, Purdue University

Brookhaven Forum 2013

 $1/\sigma_{Z} d\sigma/dl Y(\mu,\mu)$ CMS Preliminary, 4.5 fb⁻¹ at \sqrt{s} = 7 TeV, 45 < M(uµ) < 60 GeV 0.015 - Data (u) FEWZ+CT10 NNLO FEWZ+NNPDF2.1 NNLO 0.01 FEWZ+MSTW2008 NNLO FEWZ+CT10W NNLO FEWZ+JR09 NNLO 0.005 FEWZ+ABKM NNLO FEWZ+HERA NNLO 1.2 1.4 1.6 Dimuon Rapidity, IY(uu)I 0.0016 ו(ויויו) 0.0014 0.0012 CMS Preliminary, 4.5 fb⁻¹ at \sqrt{s} = 7 TeV, 200 < M(uu) < 1500 GeV $1/\sigma_{z}$ 0.001 0.0008 - Data (μ) FEWZ+CT10 NNLO 0.0006 FEWZ+NNPDF2.1 NNLO FEWZ+MSTW2008 NNLO FEWZ+CT10W NNLO 0 0004 FEWZ+JR09 NNLO FEWZ+ABKM NNLO 0.0002 FEWZ+HERA NNLO lata/theory 1.6 Dimuon Rapidity, IY(uu)I

Evidence for VBF Z Production

- EW production of Z + jets with the two jets well separated in rapidity – important benchmark in the searches for VBF Higgs
- Very hard due to dominant DY production, uses advanced multivariate techniques (BDT) to extract signal

Norbert Neumeister, Purdue University

Brookhaven Forum 2013

W

 W^{\cdot}

- Important for VBF Higgs searches
- Data compared to MadGraph and Sherpa (ME+PS) generators and to MCFM:
 - good agreement in the rapidity range!
 - differences in rapidity difference are probably due to jet matching in ME+PS

Norbert Neumeister, Purdue University

Z + Jets: Angular Correlations

- Data with $Z + \ge 3$ jets
- Leptons with $p_T > 20$ GeV, $|\eta| < 2.4$
- Anti-kt (R=0.5) jets with p_T >50 GeV, $|\eta|$ <2.5 PYTHIA: only PS
- $\Delta \Phi$ between Z and J_i, between J_i, J_I (i, l ≤ 3)
- Compatible results between ME+PS and NLO(Z+1j)+PS generators
- Sherpa and MadGraph: ME + PS
- POWHEG: NLO (Z+Ijet) + PS

arXiv:1301.1646

W + c-Jet

- In W+c events the charge of the W (and the lepton) and the charge of the c quark are of opposite sign
- Analysis uses charm hadron reconstruction to identify charm jets
 - $W \rightarrow Iv + a$ leading jet with charm content, identified through reconstruction of D^{\pm} , D^{0} , D^{*} decays

- $\sigma(W+c-jet)$ sensitive to strange content of the proton
- c-jet viable through charm mesons reconstruction
- PDF with collider data only predict a symmetric light sea, but with large uncertainty
 - In agreement with data within 1σ

Norbert Neumeister, Purdue University

Z + b-Jets

CMS-PAS-SMP-13-004

- 2011 dataset (~5 fb⁻¹)
- b-tagged Jets with p_T>25 GeV, |η|<2.4 in Z events
- Most important kinematical observables compared to ME+PS generator (MadGraph)

- Z + bb cross section 10% higher
 p^{-lead} (GeV)
 than tree-level prediction by Madgraph 5F rescaled by k = 1.23
- Some tensions in the description of the event dynamics

Multiplicity bin	μμ	ee
$\sigma(Z(\ell\ell)+1b) \text{ (pb)}$	$3.52 \pm 0.03 \pm 0.22$	$3.51 \pm 0.04 \pm 0.23$
$\sigma(Z(\ell \ell)+2b)$ (pb)	$0.38 \pm 0.02 \pm 0.07$	$0.32 \pm 0.02 \pm 0.06$
$\sigma(Z(\ell \ell)+b)$ (pb)	$3.91 \pm 0.04 \pm 0.23$	$3.84 \pm 0.04 \pm 0.24$
$\sigma(Z(\ell \ell)+b)/\sigma(Z(\ell \ell)+j)$ (%)	$5.23 \pm 0.04 \pm 0.24$	$5.08 \pm 0.05 \pm 0.24$

Norbert Neumeister, Purdue University

Diboson Production

- Fundamental test of Standard Model
 - Test of gauge structure of the Standard Model
- Probe for new physics
 - Indirect search for tree or loop effect of massive new particles
 - Anomalous Triple Gauge Couplings (TGC) and Quartic Gauge Coupling (QGC)
 - Resonances
- Irreducible background for Higgs searches
 - Precise knowledge of cross sections and kinematical distributions are important
- LO diagrams for WW, WZ and ZZ production are:

Wy, Zy Production

WW Production

WW+WZ Production

- WW + WZ production in semileptonic decays
- Signal: leptons (e and μ) and missing E_T and two jets consistent with a W or Z
- Cross sections at 7
- Reconstruct W candidate in one lepton + missing E_T
- Fit the di-jet invariant mass distribution
- Apply jet veto to reduce top backgrounds

arXiv:1210.7544

Norbert Neumeister, Purdue University

- NLO for single boson production
- gg' \rightarrow ZY,WW or ZZ (few%)

CMS have measured the production cross sections of W γ , Z γ , WW, WZ and ZZ at \sqrt{s} = 7 and 8 TeV

Norbert Neumeister, Purdue University

Triple Gauge Couplings

Feb 2013

WWZ	couplin	igs	ATLAS Limits CMS Limits D0 Limit LEP Limit	-
Ar	H	WW	-0.043 - 0.043	4.6 fb ⁻¹
ANZ	H	WV	-0.043 - 0.033	5.0 fb ⁻¹
	H•	LEP Combination	-0.074 - 0.051	0.7 fb ⁻¹
2	H-1	WW	-0.062 - 0.059	4.6 fb ⁻¹
~z	H	ww	-0.048 - 0.048	4.9 fb ⁻¹
	\vdash	WZ	-0.046 - 0.047	4.6 fb ⁻¹
	H	WV	-0.038 - 0.030	5.0 fb ⁻¹
	юн	D0 Combination	-0.036 - 0.044	8.6 fb ⁻¹
	HeH	LEP Combination	-0.059 - 0.017	0.7 fb ⁻¹
AgZ	H	WW	-0.039 - 0.052	4.6 fb ⁻¹
Δg_1	H	ww	-0.095 - 0.095	4.9 fb ⁻¹
	H	WZ	-0.057 - 0.093	4.6 fb ⁻¹
	HOH	D0 Combination	-0.034 - 0.084	8.6 fb ⁻¹
	H	LEP Combination	-0.054 - 0.021	0.7 fb ⁻¹
-0.5	0	0.5 1	1.5	
		TOOL	Inthe OOF	101

aTGC Limits @95% C.L.

Feb 2013

ZZZ	and ZZγ	coupli		its
٤ï	⊢	ZZ	-0.015	- 0.015 4.6 fb ⁻¹
T ₄	H	ZZ	-0.013	- 0.015 5.0 fb ⁻¹
۶Z	H	ZZ	-0.013	- 0.013 4.6 fb ⁻¹
I_4^-	⊢−−− +	ZZ	-0.011	- 0.012 5.0 fb ⁻¹
eï.		ZZ	-0.016	- 0.015 4.6 fb ⁻¹
T ₅	H	ZZ	-0.014	- 0.014 5.0 fb ⁻¹
٤Z	⊢I	ZZ	-0.013	- 0.013 4.6 fb ⁻¹
T ₅ ⊢−−−	⊢	ZZ	-0.012	- 0.012 5.0 fb ⁻¹
-0.5	0	0.5	1	1.5 x10 ⁻
		á	aTGC Limits	@95% C.L

WW	coupling	JS		ATLAS Limits CMS Limits D0 Limit LEP Limit	.1154
Ar -		— Wγ		-0.410 - 0.460	4.6 fb ⁻¹
Δηγ μ		Wγ		-0.380 - 0.290	5.0 fb
		ww		-0.210 - 0.220	4.9 fb
	H	WV		-0.110 - 0.140	5.0 fb ⁻¹
		D0 Com	bination	-0.158 - 0.255	8.6 fb
	H	LEP Co	mbination	-0.099 - 0.066	0.7 fb
2	\vdash	Wγ		-0.065 - 0.061	4.6 fb
Nγ	—	Wγ		-0.050 - 0.037	5.0 fb
	H	ww		-0.048 - 0.048	4.9 fb
	H-1	WV		-0.038 - 0.030	5.0 fb
ю	юн	D0 Com	bination	-0.036 - 0.044	8.6 fb
	HOH.	LEP Co	mbination	-0.059 - 0.017	0.7 fb
					1 1
-0.5	0	0.5	1	1.5	

- TGCs consistent with the SM
- Four of the WWZ and WWγ couplings are constrained to O(0.05)
 - Caveat: LEP scenario is used
 - $\Delta \kappa_{v}$ remains less precise
- ZZZ and ZZ γ couplings are constrained by the LHC results to O(0.01)

8 TeV data not included yet

Summary

- Impressive amount of EWK results from the CMS experiment
 - Precise test of the Standard Model at TeV scale
 - Agreement with theory across orders of magnitude
 - Starting to set serious constraints on electroweak parameters and PDFs
 - Measurements are challenging NLO and NNLO predictions
 - TGCs show no deviation from the SM
- Still most of the LHC data at 8 TeV to be analyzed
 - More results with improved precision expected soon, stay tuned!