Exploring Two Higgs Doublet Models Through Higgs Production

Chien-Yi Chen BNL

In collaboration with S. Dawson PRD 87, 055016 (arXiv:1301.0309)

> Brookhaven Forum 2013 May 2, 2013

Outline

- Higgs production and decay
- Introduction to two Higgs doublet models (2HDMs.)
- LHC limits
- Flavor constraints
- Conclusions

Purpose and assumptions

- Discuss the connection between the recently observed Higgs-like particle and rare B decays in the context of 2HDMs.
- Assume that the discovered Higgs is the lightest Higgs boson.
- Study physics in the non-decoupling limit.
- No tree-level FCNC

Higgs Discovery

4th July 2012: ATLAS and CMS have observed a new particle, with mass ~ 125 GeV.

Higgs productions at the LHC

• Gluon fusion (ggF)

 Vector boson fusion (VBF)

Associated production
ttH
(WH/ZH)

- Tree-level: $h \rightarrow f\bar{f}$ and $h \rightarrow VV$
- Loop: $h \rightarrow gg$, $h \rightarrow \gamma\gamma$, and $h \rightarrow Z\gamma$

Higgs Decays to Photons

- Dominant contribution is W loops
- Contribution from top is small

Note opposite signs of t/W loops

Two Higgs Doublet Models (2HDMs)

• A good review paper: [Branco, Ferreira, Lavoura, Rebelo, Sher, Silva]

$$\Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \phi_{1}^{0} \end{pmatrix}, \quad \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \phi_{2}^{0} \end{pmatrix} \qquad \langle \phi_{i}^{0} \rangle = \begin{pmatrix} 0 \\ \frac{v_{i}}{\sqrt{2}} \end{pmatrix}$$
$$\phi_{i}^{0} = \frac{v_{i}}{\sqrt{2}} + \frac{1}{\sqrt{2}} (\phi_{i}^{0,r} + i\phi_{i}^{0,i})$$
$$\beta = \tan \beta \equiv \frac{v_{2}}{v_{1}}$$

- α : The mixing angle between two CP-even neutral Higgs bosons.
- Apply an Z₂ symmetry, such that a fermion couples only to a single Higgs doublet. Free from tree level FCNCs. [S. L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958 (1977).]

$$\Phi_1 \to -\Phi_1, \Phi_2 \to \Phi_2$$
 and $d \to -d, u \to u, e \to -e$. for the type II model

- Five Higgs bosons: h, H, A, and H^{\pm}
- 6 parameters: $\alpha, \tan\beta, M_h, M_H, M_A, and M_{H^{\pm}}$
- Assume that $M_h = 125 \text{ GeV}$

Neutral Higgs couplings

Model	Type I	Type II	Lepton-specific	Flipped
$\overline{\Phi_1}$	-	<i>d</i> , ℓ	l	d
Φ_2	u, d, l	и	u, d	и, l

Neutral Higgs couplings in the 2HDMs.

$$\mathcal{L} = -\Sigma_i g_{iih} \frac{m_i}{v} \bar{f}_i f_i h^0 - \Sigma_{V=W,Z} g_{hVV} \frac{2M_V^2}{v} V_\mu V^\mu h^0$$

	Ι	II	Lepton specific	Flipped
8 _{hVV}	$\sin\left(\beta-\alpha\right)$	$\sin\left(\beta-\alpha\right)$	$\sin\left(\beta-\alpha\right)$	$\sin\left(\beta-\alpha\right)$
$g_{ht\bar{t}}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$
$g_{hb\overline{b}}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$
$g_{h au^+ au^-}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$

• Universal hVV couplings $\sin(\beta - \alpha)$

- An example of Type II: Supersymmetry
- Decoupling limit: $\sin(\beta \alpha) = 1$, $\sin \alpha = -\cos \beta$ and $\cos \alpha = \sin \beta$

Charged Higgs couplings

$$\mathcal{L} = \frac{g}{\sqrt{2}M_W} \bar{t} (\lambda_{tt} m_t P_L - \lambda_{bb} m_b P_R) b H^+ - \frac{g}{\sqrt{2}M_W} \bar{\nu} \lambda_{ll} m_l P_R l H^+ + \text{H.c.},$$

Charged Higgs Couplings in the 2HDMs

	Ι	II	Lepton Specific	Flipped
λ_{tt}	$\cot eta$	\coteta	\coteta	\coteta
λ_{bb}	$\cot eta$	$-\tan\beta$	\coteta	$-\taneta$
$\lambda_{ au au}$	\coteta	$-\taneta$	- aneta	\coteta

Signal strength

$$R_{\tt decay}^{\tt production} \equiv \frac{\sum_j \sigma(pp \to j \to h) \times B(h \to \tt decay)|_{observed}}{\sum_j \sigma(pp \to j \to h) \times B(h \to \tt decay)|_{SM}}$$

- R=1 : Standard Model Higgs
- Measuring deviations of the couplings from the SM
- Ratio: avoid the large uncertainties

Higgs to diphoton through ggF: $R_{\gamma\gamma}^{ggF}$

- $g_{hVV} = \sin(\beta \alpha)$ changes sign at large α and small $\tan\beta$.
- Not possible to obtain $R_{\gamma\gamma}^{ggF}$ larger than 1.2 for the type I.
- For the lepton specific model, at large $\tan\beta$ the contours get narrower because of the $h \rightarrow \tau \bar{\tau}$ contributions to the total width $\propto (\sin\alpha/\cos\beta)^2$, except for $\alpha \sim 0$.
- $\mathbf{R}_{\gamma\gamma}^{ggF} > 1.2$ requires $\alpha \sim 0$ and $\tan\beta > 8$.
- Similarly, for the type II and flipped models, the total widths are enhanced by the large ratio to bb and ττ̄, respectively, so the contours becomes narrower at large tanβ.

Higgs to diphoton through ggF: $R_{\gamma\gamma}^{ggF}$

- $g_{hVV} = \sin(\beta \alpha)$ changes sign at large α and small $\tan\beta$.
- Not possible to obtain $R_{\gamma\gamma}^{ggF}$ larger than 1.2 for the type I.
- For the lepton specific model, at large $\tan\beta$ the contours get narrower because of the $h \rightarrow \tau \bar{\tau}$ contributions to the total width $\propto (\sin\alpha/\cos\beta)^2$, except for $\alpha \sim 0$.
- $\mathbf{R}_{\gamma\gamma}^{ggF} > 1.2$ requires $\alpha \sim 0$ and $\tan\beta > 8$.
- Similarly, for the type II and flipped models, the total widths are enhanced by the large ratio to bb and ττ̄, respectively, so the contours becomes narrower at large tanβ.

Measured signal strength

Moriond results

$$\chi^2 fit$$

$$\chi^2 = \Sigma_i rac{(R_i^{2 ext{HDM}} - R_i^{ ext{meas}})^2}{(\sigma_i^{ ext{meas}})^2}$$

- R_i^{meas} : Measured Higgs signal strengths.
- σ_i^{meas} : The uncertainty of R_i^{meas}

 R_i^{2HDM} : Theoretical prediction from 2HDMs

 $\chi^2 fit$

- SM limit is $\cos(\beta \alpha) = 0$
- Projection: assume that the SM is correct.
- systematics ~ $\frac{1}{\sqrt{(N)}}$
- These best fit values will be used as input parameters for the flavor bounds later.

Other constraints

- Flavor constraints:
 - $BR(B \to X_s \gamma)$
 - $BR(B_s \to \mu^+ \mu^-)$

• LEP II direct search:

 $e^+e^- \rightarrow H^+H^-$ with $H^+ \rightarrow \tau \nu$ or $c\bar{s}$ at 95% CL

 $M_{H^{\pm}} \ge 78.6 \text{ GeV to } 89.6 \text{ GeV}$ [hep-ex/0107031, hep-ex/1301.6065]

Flavor constraints: $B \rightarrow X_s \gamma$

 $BR(B \to X_s \gamma) \mid_{exp} = (3.55 \pm 0.24 \pm 0.09) \times 10^{-4}$ hep-ex/0711.4889

Blue+Red: excluded at 2 sigma. Red: excluded at 3 sigma.

Flavor constraints: $B_s \rightarrow \mu^+ \mu^-$

SM

2HDMs

 $BR(B_s \rightarrow \mu^+ \mu^-)|_{exp} = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$ R. Aaij *et al.* (LHCb Collaboration) BR $(B_s \rightarrow \mu^+ \mu^-)|_{\rm SM} = (3.23 \pm 0.27) \times 10^{-9}$

Assume $M_H = M_A$

Blue+Red: excluded at 2 sigma. Red: excluded at 3 sigma.

For MH+> 500 GeV, the BR is almost a constant independent of MH+.

Flavor constraints: $B_s \rightarrow \mu^+ \mu^-$ (Type II)

Blue+Red: excluded at 2 sigma. Red: excluded at 3 sigma.

Conclusions

- We have considered four variations of 2HDMs, which have a Z₂ Symmetry.
- Only small regions of $\alpha \tan \beta$ can produce rates which are consistent with the experimental results from the LHC.
- The parameters of these models are strongly constrained by measurements.
- None of the models we studied can be excluded by current measurements.

Backup slides

Gluon fusion production

• gluon fusion (ggF)

• For the type II and flipped models, the bottom loop is proportional to $-\frac{\sin \alpha}{\cos \beta}$ and can have large contributions in the large $\tan \beta$ regions.

Higgs to $\tau \overline{\tau}$ through ggF: $R_{\tau \overline{\tau}}^{ggF}$

- In Model I and the Flipped Model, the SM rate can be obtained for small alpha.
- Similarity: I & Flipped
- Similarity: II & LS
- Not identical because of total width.

Flavor constraints: ΔM_{B_d}

 $\Delta M_{B_d}|_{\rm exp} = 0.507 \pm 0.004 \ {\rm ps}^{-1}$

hep-ex/0808.1297

• The limits from ΔM_{B_d} are identical in all 2HDMs, because it is proportional to $\lambda_{tt}^2 = \cot^2 \beta$.

Flavor constraints: $B_s \rightarrow \mu^+ \mu^-$ (Lepton-specific)

Flavor constraints: $B_s \rightarrow \mu^+ \mu^-$ (Flipped)

Blue+Red: excluded at 2 sigma. Red: excluded at 3 sigma.

VBF/VH production

 Vector boson fusion (VBF)

Higgs potential

$$V_{2\text{HDM}} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{H.c.}] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) \times (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \{\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + [\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2)] (\Phi_1^{\dagger} \Phi_2) + \text{H.c.}\}. (1)$$

$$\mathcal{L}_{\text{Yuk}} = -Y_d \bar{Q} \Phi_1 d - Y_u \bar{Q} \Phi_2^c u - Y_l \bar{L} \Phi_1 e + \text{h.c.} \quad \text{for type II.}$$

Signal strength (µ)

New preliminary updates from some channels with full 2011+2012 dataset

- Updates from $H \rightarrow WW$ and $H \rightarrow \tau \tau$ channels
- $H \rightarrow \gamma \gamma$ Updated $\mu = 0.78 \pm 0.27$ at 125 GeV
- $H \rightarrow ZZ^* \rightarrow 4/$ update includes VBF tag

ZZ(0/1 jet): $0.84^{+0.32}_{-0.26}$ ZZ(dijet): $1.22^{+0.84}_{-0.57}$

Higgs production

