Exploring Two Higgs Doublet Models Through Higgs Production

Chien-Yi Chen BNL

In collaboration with S . Dawson
PRD 87, 0550 I6 (arXiv: I30I.0309)

Brookhaven Forum 2013
May 2, 2013

Outline

- Higgs production and decay
- Introduction to two Higgs doublet models (2HDMs.)
- LHC limits
- Flavor constraints
- Conclusions

Purpose and assumptions

- Discuss the connection between the recently observed Higgs-like particle and rare B decays in the context of 2HDMs.
- Assume that the discovered Higgs is the lightest Higgs boson.
- Study physics in the non-decoupling limit.
- No tree-level FCNC

Higgs Discovery

4th July 2012:ATLAS and CMS have observed a new particle, with mass $\sim 125 \mathrm{GeV}$.

Higgs Mass

Higgs productions at the LHC

- Gluon fusion (ggF)

- Vector boson fusion (VBF)

- Associated production - ttH (WH/ZH)

Higgs Decays

- Tree-level: $\mathrm{h} \rightarrow f \bar{f}$ and $\mathrm{h} \rightarrow V V$
- Loop: $\mathrm{h} \rightarrow g g, \mathrm{~h} \rightarrow \gamma \gamma$, and $\mathrm{h} \rightarrow Z \gamma$

Higgs Decays to Photons

- Dominant contribution is W loops
- Contribution from top is small

Note opposite signs of t / W loops

Two Higgs Doublet Models (2HDMs)

- A good review paper: [Branco, Ferreira, Lavoura, Rebelo, Sher, Silva]

$$
\begin{array}{ll}
\Phi_{1} & =\binom{\phi_{1}^{+}}{\phi_{1}^{0}}, \quad \Phi_{2}=\binom{\phi_{2}^{+}}{\phi_{2}^{0}} \quad\left\langle\phi_{i}^{0}\right\rangle=\left(\begin{array}{c}
0 \\
v_{i} \\
\sqrt{2}
\end{array}\right) \\
\phi_{i}^{0} & =\frac{v_{i}}{\sqrt{2}}+\frac{1}{\sqrt{2}}\left(\phi_{i}^{0, r}+\mathrm{i} \phi_{i}^{0, i}\right)
\end{array}
$$

- $\beta: \tan \beta \equiv \frac{v_{2}}{v_{1}}$
- α : The mixing angle between two CP-even neutral Higgs bosons.
- Apply an Z_{2} symmetry, such that a fermion couples only to a single Higgs doublet. Free from tree level FCNCs. [S. L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958 (1977).]

$$
\Phi_{1} \rightarrow-\Phi_{1}, \Phi_{2} \rightarrow \Phi_{2} \quad \text { and } \quad d \rightarrow-d, u \rightarrow u, e \rightarrow-e . \text { for the type II model }
$$

- Five Higgs bosons: h, H, A, and $\mathrm{H}^{ \pm}$
- 6 parameters: $\alpha, \tan \beta, \mathrm{M}_{\mathrm{h}}, \mathrm{M}_{\mathrm{H}}, \mathrm{M}_{\mathrm{A}}$, and $\mathrm{M}_{\mathrm{H}^{ \pm}}$
- Assume that $\mathrm{M}_{\mathrm{h}}=125 \mathrm{GeV}$

Neutral Higgs couplings

Model	Type I	Type II	Lepton-specific	Flipped
Φ_{1}	-	d, ℓ	ℓ	d
Φ_{2}	u, d, ℓ	u	u, d	u, ℓ

Neutral Higgs couplings in the 2HDMs.
$\mathcal{L}=-\Sigma_{i} g_{i i h} \frac{m_{i}}{v} \bar{f}_{i} f_{i} h^{0}-\Sigma_{\mathrm{V}=W, Z} g_{h V V} \frac{2 M_{V}^{2}}{v} V_{\mu} V^{\mu} h^{0}$.

	I	II	Lepton specific	Flipped
$g_{h V V}$	$\sin (\beta-\alpha)$	$\sin (\beta-\alpha)$	$\sin (\beta-\alpha)$	$\sin (\beta-\alpha)$
$g_{h t \bar{t}}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$
$g_{h b \bar{b}}^{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$
$g_{h \tau^{+} \tau^{-}}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\operatorname{cin} \beta}$

- Universal hVV couplings $\sin (\beta-\alpha)$
- An example of Type II: Supersymmetry
- Decoupling limit: $\sin (\beta-\alpha)=1, \sin \alpha=-\cos \beta$ and $\cos \alpha=\sin \beta$

Charged Higgs couplings

$$
\begin{aligned}
\mathcal{L}= & \frac{g}{\sqrt{2} M_{W}} \bar{t}\left(\lambda_{t t} m_{t} P_{L}-\lambda_{b b} m_{b} P_{R}\right) b H^{+} \\
& -\frac{g}{\sqrt{2} M_{W}} \bar{\nu} \lambda_{l l} m_{l} P_{R} l H^{+}+\text {H.c. },
\end{aligned}
$$

Charged Higgs Couplings in the 2HDMs

	I	II	Lepton Specific	Flipped
$\lambda_{t t}$	$\cot \beta$	$\cot \beta$	$\cot \beta$	$\cot \beta$
$\lambda_{b b}$	$\cot \beta$	$-\tan \beta$	$\cot \beta$	$-\tan \beta$
$\lambda_{\tau \tau}$	$\cot \beta$	$-\tan \beta$	$-\tan \beta$	$\cot \beta$

Signal strength

$R_{\text {decay }}^{\text {production }} \equiv \frac{\sum_{j} \sigma(p p \rightarrow j \rightarrow h) \times\left.\mathrm{B}(h \rightarrow \text { decay })\right|_{\text {observed }}}{\sum_{j} \sigma(p p \rightarrow j \rightarrow h) \times\left.\mathrm{B}(h \rightarrow \text { decay })\right|_{\mathrm{SM}}}$

- $\mathrm{R}=1$: Standard Model Higgs
- Measuring deviations of the couplings from the SM
- Ratio: avoid the large uncertainties

Higgs to diphoton through ggF: $R_{\gamma \gamma}^{g g F}$

(a)

(b)

- $\mathrm{g}_{h V V}=\sin (\beta-\alpha)$ changes sign at large α and small $\tan \beta$.
- Not possible to obtain $R_{\gamma \gamma}^{g g F}$ larger than 1.2 for the type I.
- For the lepton specific model, at large $\tan \beta$ the contours get narrower because of the $\mathrm{h} \rightarrow \tau \bar{\tau}$ contributions to the total width $\propto(\sin \alpha / \cos \beta)^{2}$, except for $\alpha \sim 0$.
- $\mathrm{R}_{\gamma \gamma}^{\text {ggF }}>1.2$ requires $\alpha \sim 0$ and $\tan \beta>8$.
- Similarly, for the type II and flipped models, the total widths are enhanced by the large ratio to $b \bar{b}$ and $\tau \bar{\tau}$, respectively, so the contours becomes narrower at large $\tan \beta$.

Higgs to diphoton through ggF: $R_{\gamma \gamma}^{g g F}$

(b)

- $\mathrm{g}_{h V V}=\sin (\beta-\alpha)$ changes sign at large α and small $\tan \beta$.
- Not possible to obtain $R_{\gamma \gamma}^{g g F}$ larger than 1.2 for the type I.
- For the lepton specific model, at large $\tan \beta$ the contours get narrower because of the $\mathrm{h} \rightarrow \tau \bar{\tau}$ contributions to the total width $\propto(\sin \alpha / \cos \beta)^{2}$, except for $\alpha \sim 0$.
- $\mathrm{R}_{\gamma \gamma}^{\text {ggF }}>1.2$ requires $\alpha \sim 0$ and $\tan \beta>8$.
- Similarly, for the type II and flipped models, the total widths are enhanced by the large ratio to $b \bar{b}$ and $\tau \bar{\tau}$, respectively, so the contours becomes narrower at large $\tan \beta$.

Measured signal strength

Moriond results

$$
\begin{gathered}
\chi^{2} f i t \\
\chi^{2}=\Sigma_{i} \frac{\left(R_{i}^{\text {2HM }}-R_{i}^{\text {meas }}\right)^{2}}{\left(\sigma_{i}^{\text {meas }}\right)^{2}}
\end{gathered}
$$

$R_{i}^{\text {meas }}: \quad$ Measured Higgs signal strengths.
$\sigma_{i}^{\text {meas }}$: The uncertainty of $R_{i}^{\text {meas }}$
$R_{i}^{2 H D M}$: Theoretical prediction from 2 HDMs
χ^{2} fit

Type-I

- SM limit is $\cos (\beta-\alpha)=0$
- Projection: assume that the SM is correct.
- systematics $\sim \frac{1}{\sqrt{(N)}}$
- These best fit values will be used as input parameters for the flavor bounds later.

Other constraints

- Flavor constraints:
- $B R\left(B \rightarrow X_{s} \gamma\right)$
- $B R\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$
- LEP II direct search:

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow H^{+} H^{-} \text {with } H^{+} \rightarrow \tau \nu \text { or } c \bar{s} \text { at } 95 \% \mathrm{CL} \\
& \qquad M_{H^{ \pm}} \geq 78.6 \mathrm{GeV} \text { to } 89.6 \mathrm{GeV} \\
& \quad \text { [hep-ex/0107031, hep-ex/1301.6065] }
\end{aligned}
$$

Flavor constraints: $B \rightarrow X_{s} \gamma$

Blue + Red: excluded at 2 sigma. Red: excluded at 3 sigma.

Flavor constraints: $B_{s} \rightarrow \mu^{+} \mu^{-}$

2HDMs

$\left.\operatorname{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)\right|_{\exp }=\left(3.2_{-1.2}^{+1.5}\right) \times 10^{-9} \quad$ R. Aaii et al. (LHCb Collaboration)
$\left.\mathrm{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)\right|_{\mathrm{SM}}=(3.23 \pm 0.27) \times 10^{-9}$

Flavor constraints: $\quad B_{s} \rightarrow \mu^{+} \mu^{-}$(Type I)

Assume $M_{H}=M_{A}$
Blue + Red: excluded at 2 sigma.
Red: excluded at 3 sigma.
For MH+> 500 GeV , the BR is almost a constant independent of MH+.

Flavor constraints: $\quad B_{s} \rightarrow \mu^{+} \mu^{-}$(Type II)

Blue + Red: excluded at 2 sigma.
Red: excluded at 3 sigma.

Conclusions

- We have considered four variations of 2HDMs, which have a Z_{2} Symmetry.
- Only small regions of $\alpha-\tan \beta$ can produce rates which are consistent with the experimental results from the LHC.
- The parameters of these models are strongly constrained by measurements.
- None of the models we studied can be excluded by current measurements.

Backup slides

Gluon fusion production

- gluon fusion (ggF)

- For the type II and flipped models, the bottom loop is proportional to $-\frac{\sin \alpha}{\cos \beta}$ and can have large contributions in the large $\tan \beta$ regions.

Higgs to $\tau \bar{\tau}$ through ggF: $R_{\tau \bar{\tau}}^{g g}$

- In Model I and the Flipped Model, the SM rate can be obtained for small alpha.
- Similarity: I \& Flipped
- Similarity: II \& LS
- Not identical because of total width.

Flavor constraints: $\Delta M_{B_{d}}$

$$
\left.\Delta M_{B_{d}}\right|_{\exp }=0.507 \pm 0.004 \mathrm{ps}^{-1} .
$$

- The limits from $\Delta M_{B_{d}}$ are identical in all 2 HDMs , because it is proportional to $\lambda_{t t}^{2}=\cot ^{2} \beta$.

Blue + Red: excluded at 2 sigma.
Red: excluded at 3 sigma.

Flavor constraints: $\quad B_{s} \rightarrow \mu^{+} \mu^{-}$(Lepton-specific)

$$
M_{H^{0}}=M_{A}=145 \mathrm{GeV}
$$

The dominant contribution to $B_{s} \rightarrow \mu^{+} \mu^{-}$ is proportional to $\lambda_{t t} \lambda_{\mu \mu}$ so the branching ratio is insensitive to $\tan \beta$.

Flavor constraints: $B_{s} \rightarrow \mu^{+} \mu^{-}$(Flipped)

Blue + Red: excluded at 2 sigma.
Red: excluded at 3 sigma.

VBF/VH production

- Vector boson fusion (VBF)

Higgs potential

$$
\begin{aligned}
V_{2 \mathrm{HDM}}= & m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}-\left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { H.c. }\right] \\
& +\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right) \\
& \times\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\left\{\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}\right. \\
& \left.+\left[\lambda_{6}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right]\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+\text { H.c. }\right\} . \text { (1) }
\end{aligned}
$$

$\mathcal{L}_{\text {Yuk }}=-Y_{d} \bar{Q} \Phi_{1} d-Y_{u} \bar{Q} \Phi_{2}^{c} u-Y_{l} \bar{L} \Phi_{1} e+$ h.c. \quad for type II.

Higgs Decay Mode	$\hat{\mu}\left(m_{H}=125.5 \mathrm{GeV}\right)$
$V H \rightarrow V b b$	-0.4 ± 1.0
$H \rightarrow \tau \tau$	0.8 ± 0.7
$H \rightarrow W W^{(*)}$	1.0 ± 0.3
$H \rightarrow \gamma \gamma$	1.6 ± 0.3
$H \rightarrow Z Z^{(*)}$	1.5 ± 0.4
Combined	1.30 ± 0.20

ATLAS Preliminary	$m_{H}=125.5 \mathrm{GeV}$
$\mathrm{w}, \mathrm{ZH} \rightarrow \mathrm{bb}$ $\sqrt{5}=7 \mathrm{TeV}: \int$ Ldt $=4.7 \mathrm{fb}^{-1}$ $\sqrt{s}=8 \mathrm{TeV}: \int \mathrm{Ldt}=13 \mathrm{ft}^{-1}$	
	\bullet
$\begin{aligned} & \mathrm{H} \rightarrow \text { WW }^{(0)} \rightarrow \text { Vlv } \\ & \sqrt{5}=7 \text { TVV: } \int \operatorname{Ldt}=4.6 \mathrm{ts}^{-1} \\ & \sqrt{5}=8 \text { TeV: } \int \mathrm{Ldt}=20.7 \mathrm{fb}^{-1} \end{aligned}$	-:
	\bullet
$-100+1$	
	ignal strength (μ)

New preliminary updates from some channels with full $2011+2012$ dataset

- Updates from $H \rightarrow W W$ and $H \rightarrow \tau \tau$ channels
- $H \rightarrow \gamma \gamma$ Updated $\mu=0.78 \pm 0.27$ at $125 \mathbf{~ G e V}$
- $H \rightarrow Z Z^{*} \rightarrow 4 /$ update includes VBF tag

$$
\begin{gathered}
Z Z(0 / 1 \text { jet }): 0.84_{-0.26}^{+0.32} \\
Z Z(\text { dijet }): 1.22_{-0.57}^{+0.84}
\end{gathered}
$$

Higgs production

