New ways to TeV scale leptogenesis

Chee Sheng Fong

INFN - Laboratori Nazionali di Frascati Frascati, Italy

May 2, 2013 / Brookhaven Forum 2013 Upton, New York

In preparation CSF, M. C. Gonzalez-Garcia, E. Peinado and E. Nardi

Outline

Motivation

2 The Models

Leptogenesis at TeV scale

Collider Signatures

5 Summary

Outline

Motivation

2 The Models

Leptogenesis at TeV scale

Collider Signatures

5 Summary

Motivation

Motivation

'Simplest' way to give neutrino masses: introducing a gauge singlet fermion *N* [Minkowski(1977), Yanagida(1979), Gell-Mann et al. (1979), Glashow (1980), Mohapatra and Senjanovic (1981)]

Type-I seesaw:
$$m_{
u}\simeq -\lambda\,M^{-1}\lambda^{T}\left\langle H
ight
angle ^{2}$$

For free: baryogenesis through leptogenesis [Fukugita and Yanagida (1986)]

Conventional type-I leptogenesis requires $M\gtrsim 10^9~{\rm GeV}\implies\lambda\sim 10^{-3}$ [Davidson and Ibarra (2002)]

• Too heavy for production in the collider!

Resonant type-I leptogenesis with $M \sim 10^3 \text{ GeV} \implies \lambda \sim 10^{-6}$ [Pilaftsis (1997)]

• Neutrino Yukawa coupling too small for production in the collider!

Consider a scenario which fulfills:

- (i) type-I seesaw at the TeV scale
- (ii) leptogenesis at $T \sim O(\text{TeV})$
- (iii) testable at the LHC via direct production of N and of the new scalars

Motivation

Motivation

'Simplest' way to give neutrino masses: introducing a gauge singlet fermion *N* [Minkowski(1977), Yanagida(1979), Gell-Mann et al. (1979), Glashow (1980), Mohapatra and Senjanovic (1981)]

Type-I seesaw:
$$m_{
u}\simeq -\lambda\,M^{-1}\lambda^{T}\left\langle H
ight
angle ^{2}$$

For free: baryogenesis through leptogenesis [Fukugita and Yanagida (1986)]

Conventional type-I leptogenesis requires $M\gtrsim 10^9~{\rm GeV}\implies\lambda\sim 10^{-3}$ [Davidson and Ibarra (2002)]

• Too heavy for production in the collider!

Resonant type-I leptogenesis with $M \sim 10^3 \text{ GeV} \implies \lambda \sim 10^{-6}$ [Pilaftsis (1997)]

• Neutrino Yukawa coupling too small for production in the collider!

Consider a scenario which fulfills:

- (i) type-I seesaw at the TeV scale
- (ii) leptogenesis at $T \sim O(\text{TeV})$
- (iii) testable at the LHC via direct production of N and of the new scalars

Leptogenesis at TeV scale

4 Collider Signatures

5 Summary

The Models

Type-I seesaw

$$-\mathcal{L}_{\text{seesaw}} = \frac{1}{2} M_i \overline{N_i^c} N_i + \epsilon_{ab} \lambda_{\alpha i} \overline{\ell_{\alpha}^a} N_i H^{b*} + \text{h.c.}$$

2012 would mark the beginning of the discovery of fundamental scalars in nature + new scalar $\bar{\psi}$

$$-\mathcal{L}_{\tilde{\psi}} = \frac{1}{2}M_{\tilde{\psi}}^2\tilde{\psi}^{\dagger}\tilde{\psi} + \overline{\psi}_L \cdot \eta \cdot N\,\tilde{\psi} + \sum_{\psi'\,\psi''}\overline{\psi}_L' \cdot y \cdot \psi_R''\,\tilde{\psi} + \text{h.c.}$$

Scalar field $ ilde{\psi}$	y-type couplings	В	L	ΔB	ΔL
	$\bar{\ell}e\left(\epsilon\tilde{\ell}^{*} ight),\ \bar{Q}d\left(\epsilon\tilde{\ell}^{*} ight),\ \bar{Q}u\tilde{\ell}$				-1
ĩ	$ar{\ell}(\epsilon\ell^c) ilde{e}$		+2		+1
<i>Q</i>	$ar{\ell}d\left(\epsilon ilde{\mathcal{Q}}^{*} ight)$	+1/3	-1		-1
ũ	$\overline{d^c}d\widetilde{u}$	-2/3		-1	0
	$\overline{\ell}(\epsilon Q^c)\widetilde{d},\ \overline{Q^c}(\epsilon Q)\widetilde{d},\ \overline{u}e^c\widetilde{d},\ \overline{u^c}d\widetilde{d}$				

Convention: L(N) = 0

The Models

Type-I seesaw

$$-\mathcal{L}_{\text{seesaw}} = \frac{1}{2} M_i \overline{N_i^c} N_i + \epsilon_{ab} \lambda_{\alpha i} \overline{\ell_{\alpha}^a} N_i H^{b*} + \text{h.c.}$$

2012 would mark the beginning of the discovery of fundamental scalars in nature + new scalar $\tilde{\psi}$

$$-\mathcal{L}_{\tilde{\psi}} = \frac{1}{2} M_{\tilde{\psi}}^2 \tilde{\psi}^{\dagger} \tilde{\psi} + \overline{\psi}_L \cdot \eta \cdot N \, \tilde{\psi} + \sum_{\psi' \cdot \psi''} \overline{\psi'_L} \cdot y \cdot \psi''_R \, \tilde{\psi} + \text{h.c.}$$

Scalar field $ ilde{\psi}$	y-type couplings	В	L	ΔB	ΔL
$\tilde{\ell}$	$\bar{\ell}e\left(\epsilon\tilde{\ell}^{*} ight),\ \bar{Q}d\left(\epsilon\tilde{\ell}^{*} ight),\ \bar{Q}u\tilde{\ell}$	0	0	0	-1
ẽ	$ar{\ell}(\epsilon\ell^c) ilde{e}$	0	+2	0	+1
$ ilde{Q}$	$ar{\ell} d (\epsilon ilde{\mathcal{Q}}^*)$	+1/3	-1	0	-1
ũ	$\overline{d^c}d\widetilde{u}$	-2/3	0	-1	0
\tilde{d}	$\overline{\ell}(\epsilon Q^c)\widetilde{d},\ \overline{Q^c}(\epsilon Q)\widetilde{d},\ \overline{u}e^c\widetilde{d},\ \overline{u^c}d\widetilde{d}$	_	_	_	_

Convention: L(N) = 0

How does a new scalar help?

The production of RH neutrino through $\tilde{\psi}$ exchange which, being gauge non-singlets, have sizable couplings to the SM gauge bosons.

The Models

- **②** The new decay channel $N \to \bar{\psi}\tilde{\psi}$ with associated CP violating asymmetry contributions from self energy loops (λ and η), and from vertex corrections (λ).
- They contribute via new self energy diagrams (λ) to the CP asymmetries in $N \rightarrow \bar{\ell}H$ decays.

Since the couplings η are not related to light neutrino masses, they can be sufficiently large to allow for *N* production with observable rates and for large enhancements of the *CP* asymmetries.

 $\chi^{(\prime)} = \ell_{\alpha}, \, (\psi_m) \text{ and } \tilde{\chi}^{(\prime)} = H, \, (\tilde{\psi})$

The Models with $\tilde{\ell}$, \tilde{u} and \tilde{d}

- $\tilde{\ell}$ is a second Higgs. At TeV scale can induce dangerous FCNC at the tree level [Georgi (1979)]. Experimental limits then imply that either $M_{\tilde{\ell}}$ very large, or that its couplings sufficiently small [Branco (2012)] \implies a TeV-scale $\tilde{\ell}$ is not favorable.
- The scalar \tilde{u} can couple to SM fermions in a *B* and *L* conserving way with $L(\tilde{u}) = 0$ and $B(\tilde{u}) = -2/3$. The only *L*-violating term is still $\lambda \bar{\ell} N H$ violate $L \implies$ doesn't help with leptogenesis. Moreover, $\bar{u}N^c\tilde{u}$ violates *B* by one unit and gives rise (after EWSB) to dimension 6 operator that induces $p, n \rightarrow \pi\nu$: $\frac{1}{M_{\tilde{u}}^2} \sqrt{\frac{m_\nu}{M_N}} (\bar{d}^c d) (\bar{\nu}u)$. Taking $m_\nu \sim 10^{-2} \,\text{eV}$ and $M_{\tilde{u}} \sim M_N \sim 1 \,\text{TeV}$ we have

$$au_{N o \pi
u} \sim 10^{32} \left(\frac{10^{-19}}{y_{dd \tilde{u}} \eta_{N u \tilde{u}}} \right)^2 \, {
m yrs.} \, .$$

To satisfy the experimental limits [Beringer (2012)] $\tau_{p,n\to\pi\nu} \lesssim 10^{32}$ yrs. requires extreme suppression of the couplings y and $\eta \implies$ we won't consider this possibility.

The scalar *d* can be coupled in a gauge invariant way both to quark-quark and to quark-leptons bilinears, and thus there is no possible assignment that conserves *B* and *L*. Hence it can mediate proton decay via unsuppressed dimension 6 operators ⇒ a TeV scale *d* must be excluded.

The Models with \tilde{e} and \tilde{Q}

- () \tilde{e} is a lepton with L = +2
 - No B violation, safe from nucleon decays
 - $\overline{e}_L \cdot \eta \cdot \tilde{e}$ violates *L*, suitable to enhance the CP asymmetries for leptogenesis
 - Can be produced at the LHC via $q\bar{q}
 ightarrow ilde{e} ilde{e}^*$
 - if $M_{\tilde{e}} > M_1$, can have $\tilde{e} \rightarrow e N_1$
- 2 \tilde{Q} is a leptoquark with L = -1 and B = +1/3
 - No B violation, safe from nucleon decays
 - $\overline{Q}_L \cdot \eta \cdot \tilde{Q}$ violates *L*, suitable to enhance the CP asymmetries for leptogenesis
 - Can be produced via $gg \to \tilde{Q}\tilde{Q}^*$ and $q\bar{q} \to \tilde{Q}\tilde{Q}^*$ (also $qq \to \tilde{Q}\tilde{Q}$)
 - Can bridge RH neutrino production at the observable level if its η couplings are sufficiently large

TeV-scale \tilde{Q} and \tilde{e} are good candidates.

C. S. Fong (INFN - LNF)

Outline

The Models

Leptogenesis at TeV scale

4 Collider Signatures

5 Summary

Leptogenesis at TeV scale: Sakhavrov's conditions

Sakharov's conditions [Sakharov (1967)]: (i) L violation (ii) C & CP violation (iii) Out of equilibrium N_1 dynamics: $N_1 \rightarrow \ell H, \psi \tilde{\psi}^*$

$$\begin{split} \Gamma_1 &\lesssim H(T) \\ \frac{M_1}{16\pi} \left(\kappa_\ell (\lambda^\dagger \lambda)_{11} + \kappa_\psi (\eta^\dagger \eta)_{11} \right) &\lesssim 17 \, \frac{T^2}{M_p} \end{split}$$

which, at temperatures $T \sim M_1 \sim 1$ TeV, gives

$$\kappa_L(\lambda^{\dagger}\lambda)_{11} + \kappa_{\psi}(\eta^{\dagger}\eta)_{11} \lesssim 7 \cdot 10^{-14}$$

 \longrightarrow excludes direct production of N_1 at colliders*

 \rightarrow but direct production of $N_{2,3}$ would be possible with $\eta_{\alpha(2,3)} \gg \eta_{\alpha 1}$

* if
$$M_{_{ ilde u \widetilde b}} > M_1$$
 , we can have $ilde \psi o \psi N_1$

Leptogenesis at TeV scale

Leptogenesis at TeV scale: CP asymmetry & washout

Assuming $M_j > M_1 > M_{\tilde{\psi}}$, the CP asymmetries in $N_1 \to \psi \tilde{\psi}^*$ decay is

$$\epsilon \sim -\sum_{j} rac{\kappa}{16\pi(\eta^{\dagger}\eta)_{11}} \left| (\eta^{\dagger}\eta)_{1j}^{2} \right| (\sin\phi) rac{M_{1}}{M_{j}}, \qquad (\kappa = 7 \text{ for } \tilde{Q} \text{ and } 2 \text{ for } \tilde{e})$$

For example the *s*-channel washout processes:

$$\mathcal{O}\left(|\eta_{\beta j}|^2 \cdot |\lambda_{\alpha j}|^2\right): \qquad \bar{\psi}_{\beta} \tilde{\psi} \iff \ell_{\alpha} H\left(\ell_{\alpha} H\right)$$
$$\mathcal{O}\left(|\eta_{\alpha j}|^2 \cdot |\eta_{\beta j}|^2\right): \qquad \bar{\psi}_{\alpha} \tilde{\psi} \iff \psi_{\beta} \tilde{\psi}^*$$

The condition of out of equilibrium reads:

$$\frac{1}{\pi^3} \frac{T^3}{M_j^2} \left| \xi_{\alpha j} \right|^2 \cdot \left| \xi_{\beta j}' \right|^2 \lesssim 17 \frac{T^2}{M_p} \implies \left| \xi_{\alpha j} \right| \cdot \left| \xi_{\beta j}' \right| \lesssim 1.6 \cdot 10^{-7} \frac{M_j}{M_1} \left(\frac{M_1}{1 \, \text{TeV}} \right)^{1/2}$$

where ξ and ξ' denote either λ or η .

Leptogenesis at TeV scale

Leptogenesis at TeV scale: CP asymmetry & washout

Assuming $M_j > M_1 > M_{\tilde{\psi}}$, the CP asymmetries in $N_1 \to \psi \tilde{\psi}^*$ decay is

$$\epsilon \sim -\sum_j rac{\kappa}{16\pi(\eta^\dagger \eta)_{11}} \left| (\eta^\dagger \eta)_{1j}^2 \right| (\sin \phi) rac{M_1}{M_j}, \qquad (\kappa = 7 ext{ for } \tilde{Q} ext{ and 2 for } ilde{e})$$

For example the *s*-channel washout processes:

$$\mathcal{O}\left(|\eta_{\beta j}|^{2} \cdot |\lambda_{\alpha j}|^{2}\right): \qquad \bar{\psi}_{\beta} \tilde{\psi} \iff \ell_{\alpha} H\left(\ell_{\alpha} H\right)$$
$$\mathcal{O}\left(|\eta_{\alpha j}|^{2} \cdot |\eta_{\beta j}|^{2}\right): \qquad \bar{\psi}_{\alpha} \tilde{\psi} \iff \psi_{\beta} \tilde{\psi}^{*}$$

The condition of out of equilibrium reads:

$$\frac{1}{\pi^3} \frac{T^3}{M_j^2} \left| \xi_{\alpha j} \right|^2 \cdot \left| \xi_{\beta j}' \right|^2 \lesssim 17 \frac{T^2}{M_p} \implies \left| \xi_{\alpha j} \right| \cdot \left| \xi_{\beta j}' \right| \lesssim 1.6 \cdot 10^{-7} \frac{M_j}{M_1} \left(\frac{M_1}{1 \, \text{TeV}} \right)^{1/2}$$

where ξ and ξ' denote either λ or η .

Can we still have $\eta_{\alpha 2(3)}$ large?

C. S. Fong (INFN - LNF)

Leptogenesis at TeV scale: Subtleties

In fact, $\bar{\psi}_{\alpha}\tilde{\psi} \leftrightarrow \psi_{\beta}\tilde{\psi}^*$ in equilibrium $\implies \mu_{\tilde{\psi}} = \mu_{\psi} \implies \underline{\text{No washout!}}$ The reason being $\mu_{\psi} - \mu_{\tilde{\psi}}$ is precisely the number densities factor that weights the washout rates from the inverse decays $\psi + \tilde{\psi}^* \rightarrow N_1$ and $\bar{\psi} + \tilde{\psi} \rightarrow N_1$.

However *null* washout is a **killer** for leptogenesis (with vanishing initial N_1 abundance). The reason being the asymmetry generated when $\psi \tilde{\psi}^* \to N_1$ exactly <u>cancels</u> the opposite sign asymmetry when $N_1 \to \psi \tilde{\psi}^*$.

This is easily understood by writing the Boltzmann equations with no washout term:

$$\begin{split} \dot{Y}_N &= -(y_N - 1) \gamma_{N\psi\tilde{\psi}} \\ \dot{Y}_{\Delta_{B-L}} &= -\epsilon_{\tilde{\psi}} (y_N - 1) \gamma_{N\psi\tilde{\psi}} \\ &= \epsilon_{\tilde{\psi}} \dot{Y}_N \end{split}$$

where $\dot{Y} = (sHz) dY/dz$, with *s* the entropy density and z = M/T. After integrating, we obtain at the final time $z_f \gg 1$:

 $Y_{\Delta_{B-L}}(z_f) = \epsilon_{\tilde{\psi}} Y_N(z_i)$

where we have used $Y_N(z_f) = 0$ and assuming no initial asymmetries $Y_{\Delta B-L}(z_i) = 0$.

Leptogenesis at TeV scale Leptogenesis at TeV scale: Subtleties

In fact, $\bar{\psi}_{\alpha}\tilde{\psi} \leftrightarrow \psi_{\beta}\tilde{\psi}^*$ in equilibrium $\implies \mu_{\tilde{\psi}} = \mu_{\psi} \implies \underline{\text{No washout!}}$ The reason being $\mu_{\psi} - \mu_{\tilde{\psi}}$ is precisely the number densities factor that weights the washout rates from the inverse decays $\psi + \tilde{\psi}^* \rightarrow N_1$ and $\bar{\psi} + \tilde{\psi} \rightarrow N_1$.

However *null* washout is a **killer** for leptogenesis (with vanishing initial N_1 abundance). The reason being the asymmetry generated when $\psi \tilde{\psi}^* \to N_1$ exactly <u>cancels</u> the opposite sign asymmetry when $N_1 \to \psi \tilde{\psi}^*$.

This is easily understood by writing the Boltzmann equations with no washout term:

$$\begin{split} \dot{Y}_N &= -(y_N-1) \gamma_{N\psi\tilde{\psi}} \\ \dot{Y}_{\Delta_{B-L}} &= -\epsilon_{\tilde{\psi}} (y_N-1) \gamma_{N\psi\tilde{\psi}} \\ &= \epsilon_{\tilde{\psi}} \dot{Y}_N \end{split}$$

where $\dot{Y} = (sHz) dY/dz$, with *s* the entropy density and z = M/T. After integrating, we obtain at the final time $z_f \gg 1$:

$$Y_{\Delta_{B-L}}(z_f) = \epsilon_{\tilde{\psi}} Y_N(z_i)$$

where we have used $Y_N(z_f) = 0$ and assuming no initial asymmetries $Y_{\Delta B-L}(z_i) = 0$.

Leptogenesis at TeV scale Leptogenesis at TeV scale: Subtleties

In fact, $\bar{\psi}_{\alpha}\tilde{\psi} \leftrightarrow \psi_{\beta}\tilde{\psi}^*$ in equilibrium $\implies \mu_{\tilde{\psi}} = \mu_{\psi} \implies \underline{\text{No washout!}}$ The reason being $\mu_{\psi} - \mu_{\tilde{\psi}}$ is precisely the number densities factor that weights the washout rates from the inverse decays $\psi + \tilde{\psi}^* \rightarrow N_1$ and $\bar{\psi} + \tilde{\psi} \rightarrow N_1$.

However *null* washout is a **killer** for leptogenesis (with vanishing initial N_1 abundance). The reason being the asymmetry generated when $\psi \tilde{\psi}^* \to N_1$ exactly <u>cancels</u> the opposite sign asymmetry when $N_1 \to \psi \tilde{\psi}^*$.

This is easily understood by writing the Boltzmann equations with no washout term:

$$\begin{aligned} \dot{Y}_{N} &= -(y_{N}-1) \gamma_{N\psi\tilde{\psi}} \\ \dot{Y}_{\Delta_{B-L}} &= -\epsilon_{\tilde{\psi}} (y_{N}-1) \gamma_{N\psi\tilde{\psi}} + \frac{1}{2} y_{\Delta_{B-L}} \gamma_{N\ell H} \\ &= \epsilon_{\tilde{\psi}} \dot{Y}_{N} + \frac{1}{2} y_{\Delta_{B-L}} \gamma_{N\ell H} \end{aligned}$$

where $\dot{Y} = (sHz) dY/dz$, with *s* the entropy density and z = M/T. After integrating, we obtain at the final time $z_f \gg 1$:

$$Y_{\Delta_{B-L}}(z_f) = \epsilon_{\tilde{\psi}} \int_{z_i}^{z_f} dz' \frac{dY_N}{dz'} \exp\left[\int_{z'}^{z_f} dz'' g(z'') \gamma_{N\ell H}(z'')\right]$$

where we have used $Y_N(z_f) = 0$ and assuming no initial asymmetries $Y_{\Delta B-L}(z_i) = 0$.

But we do have washout from neutrino Yukawa interaction $N_1 \rightarrow \ell H!$

C. S. Fong (INFN - LNF)

Leptogenesis at TeV scale: Summary I

For $M_{\tilde{\psi}} < M_1 < M_{2,3}$, leptogenesis can proceed through

•
$$N_1 \to Q \tilde{Q}^*$$
 creating $Y_{\Delta \tilde{Q}}$ then transfer to $Y_{\Delta \ell}$ through $\tilde{Q}^* \to \ell \bar{d}$

2 $N_1 \to e\tilde{e}^*$ creating $Y_{\Delta\tilde{e}}$ then transfer to $Y_{\Delta\ell}$ through $\tilde{e} \to \ell\ell$

With $\eta_{\alpha 1}, y, \lambda_{\alpha 1} \lesssim 10^{-7}$, $\lambda_{\alpha 2(3)} \lesssim 10^{-6}$, $\eta_{\alpha 2(3)} \sim 0.1$ and $M_1/M_2 = 0.5$, we have

$$\begin{aligned} \epsilon_{\tilde{Q}} \sim 7 \times 10^{-4}, & \epsilon_{\tilde{e}} \sim 2 \times 10^{-4} \\ Y_{\Delta B} \sim 9 \times 10^{-7} \eta_{\text{eff}}^{\tilde{Q}}, & Y_{\Delta B} \sim 3 \times 10^{-7} \eta_{\text{eff}}^{\tilde{e}} \end{aligned}$$

From CMB, we have $Y_{\Delta B}^{
m CMB}=8.8 imes10^{-11}$ [Komatsu et al. (2011)]

$$\implies \eta_{\mathrm{eff}}^{ ilde{Q}} \gtrsim 9 imes 10^{-5}, \qquad \eta_{\mathrm{eff}}^{ ilde{e}} \gtrsim 3 imes 10^{-4}$$

Leptogenesis at TeV scale: Summary II

For $M_1 < M_{ ilde{\psi}} < M_{2,3}$, leptogenesis can proceed through

•
$$N_2 \to Q \tilde{Q}^*$$
 creating $Y_{\Delta \tilde{Q}}$ then transfer to $Y_{\Delta \ell}$ through $\tilde{Q}^* \to \ell \bar{d}$

② $N_2 \to e\tilde{e}^*$ creating $Y_{\Delta\tilde{e}}$ then transfer to $Y_{\Delta\ell}$ through $\tilde{e} \to \ell\ell$

With $\eta_{\alpha 1(2)}, y, \lambda_{\alpha 1(2)} \lesssim 10^{-7}$, $\lambda_{\alpha 3} \lesssim 10^{-6}$, $\eta_{\alpha 2(3)} \sim 0.1$ and $M_2/M_3 = 0.5$, we have

$$\epsilon_{\tilde{Q}} \sim 7 \times 10^{-4}, \qquad \epsilon_{\tilde{e}} \sim 2 \times 10^{-4}$$
$$V_{\Delta B} \sim 9 \times 10^{-7} \eta_{\text{eff}}^{\tilde{Q}} \times \text{BR}(\tilde{Q}^* \to \ell \bar{d}), \qquad Y_{\Delta B} \sim 3 \times 10^{-7} \eta_{\text{eff}}^{\tilde{e}} \times \text{BR}(\tilde{e} \to \ell \ell)$$

From CMB, we have $Y^{
m CMB}_{\Delta B}=8.8 imes10^{-11}$ [Komatsu et al. (2011)]

 $\implies \eta_{\rm eff}^{\tilde{\mathcal{Q}}} \gtrsim 9 \times 10^{-5} / {\rm BR}(\tilde{\mathcal{Q}}^* \to \ell \bar{d}), \qquad \eta_{\rm eff}^{\tilde{e}} \gtrsim 3 \times 10^{-4} / {\rm BR}(\tilde{e} \to \ell \ell)$

In this case, after \tilde{Q} and \tilde{e} are produced at LHC, we can have $\tilde{Q} \rightarrow QN_1$ and $\tilde{e} \rightarrow eN_1$

Outline

Motivation

2 The Models

Leptogenesis at TeV scale

4 Collider Signatures

5 Summary

Collider Signatures

Exclude $M_{\tilde{Q}} < 1070(785)$ GeV at 95 % CL at $\sqrt{s} = 8$ TeV and 19.6 fb⁻¹ assuming BR($\tilde{Q} \rightarrow \bar{\ell}_{\mu} d$) = 1.0(0.5) [CMS collaboration (2013)]

Collider Signatures

Outline

Motivation

2 The Models

Leptogenesis at TeV scale

Collider Signatures

Summary

Type-I seesaw with the addition of new scalars $\tilde{Q}(3,2,1/6)$ and/or $\tilde{e}(1,1,-1)$ at the TeV scale, we can

- Generate neutrino masses at the TeV scale
- Realize a new way of TeV scale leptogenesis
- Testable at the collider with the production of new scalars and right-handed neutrinos
- Fulfill phenomenological constraints (nucleon decays)

Summary

Type-I seesaw with the addition of new scalars $\tilde{Q}(3,2,1/6)$ and/or $\tilde{e}(1,1,-1)$ at the TeV scale, we can

- Generate neutrino masses at the TeV scale
- Realize a new way of TeV scale leptogenesis
- Testable at the collider with the production of new scalars and right-handed neutrinos
- Fulfill phenomenological constraints (nucleon decays)

Thanks for your attention.