Nucleon EDM & Decay from the Lattice

Eigo Shintani(RIKEN-BNL) for the RBC-UKQCD collaborations

Topics

Introduction

- Neutron and proton EDM
- Proton decay matrix elements
- Summary and future work

Introduction

Search for NP from lattice QCD

Precise bound of undetected observables

Direct constraint on BSM

EDM (nucleon (quark), electron, ...), Proton(neutron) decay, NNbar oscillation, LFV, dark matter search, ...

- Intensity frontier physics
- Hadronic correction should be significant

Need to take account of nucleon structure, and low energy physics of QCD

Require the model independent method for strong interaction

Lattice QCD plays a key role !

Lattice fermion

- There are several kinds of fermion definition on the lattice
 Due to Nielsen-Ninomiya no-go theorem
- Require "realistic" fermion for the precise calculation
 - Wilson-clover (and staggered fermions) may not be appropriate (due to sys. error maybe...)
 - Domain-wall fermion (and also overlap fermion) we use here

Domain-Wall fermion (DWF)

- L, R fermion are localized on boundaries \Rightarrow Chiral symmetry (if L_s $\rightarrow\infty$).
- Good chiral symmetry Chiral symmetry breaking is suppressed as *am_{res}* ~ exp(-L_s).

[Blum Soni, (97), CP-PACS(99), RBC(00), RBC/UKQCD. (05 --)]

Our strategy

- Non-perturbative determination of QCD contribution to nucleon (neutron and proton) EDM & decay from lattice
- Domain-wall fermion
 - High precision, but highly computational cost spend more than I year using powerful supercomputer
 - New development of algorithm to carry out efficiently
- All-mode-averaging (AMA) algorithm

Blum, Izubichi, ES, 1208.4349

- more than 5 times faster !
- various applications to other observables (nucleon form factor)
- possible to perform high precision measurement

Nucleon EDM from the lattice

Nucleon EDM in the SM and BSM

- Sensitive to P, CP violation
- Upper limit from experiment: $< 2.9 \times 10^{-26} \text{ e} \cdot \text{cm}$
- Contribution from weak boson: CKM phase

Very tiny, which is 3-loop : $d_N^{KM} \simeq 10^{-30} - 10^{-32} e^{-cm}$

Khriplovich and Zhitnitsky, PLB109, 490 (1982); Czarnecki, Krause, PRL78, 4339 (1997)

• Contribution from QCD: θ term

Unnaturally small (strong CP problem): $\bar{\theta} < 10^{-9\pm1}$

Crewther, et al. (1979), Ellis, Gaillard (1979)

► Contribution from BSM: dim-5,6 operator $\mathcal{O}_{qEDM} = d_q \bar{q} (\sigma \cdot F) \gamma_5 q, \ \mathcal{O}_{cEDM} = d_q^c \bar{q} (\sigma \cdot G) \gamma_5 q, \ \mathcal{O}_{Weinberg} = d^G G G \tilde{G}$ $d_N = d_N^{QCD} \bar{\theta} + d_N (d_q, d_q^c) + d_N (d^G)$ $\sim 10^{-17} [e \cdot cm] \bar{\theta} + (1.4 - 0.47) d_d - (0.12 - 0.35) d_u + O(10^{-2}) d_q^c$ $\sim O(10^{-25} - 10^{-27}) e \cdot cm$ Hisano, Shimizu (04), Ellis, Lee, Pilaftsis (08), Hisano, Lee, Nagata, Shimizu (12)

Nucleon EDM from lattice QCD

Non-perturbative determination of QCD effect

\$L_{\theta}\$
From lattice QCD we obtain \$d_N\$ in \$d_N^{QCD} = \bar{\theta} d_N\$
\$\theta\$ parameter can be estimated by \$d_N^{exp}/d_N\$ = \$\theta\$ (if there is no BSM)
\$L_{qEDM}\$, \$L_{cEDM}\$
From lattice QCD we obtain \$C_{qEDM}\$, \$C_{cEDM}\$
\$d_N^{BSM} = \$\sum_{n=1}^{\infty} [d_q^{qEDM} C_{qEDM}^q + d_q^{cEDM} C_{cEDM}^q]\$

 $d^{\ensuremath{\mathsf{qEDM}}}$, $d^{\ensuremath{\mathsf{cEDM}}}$ depend on BSM parameters.

Result of lattice QCD is an important input value for BSM search

Methods

Spectrum

 $\mathbf{m}_{\uparrow \text{ spin}} - \mathbf{m}_{\downarrow \text{ spin}} = 2\mathbf{d}_{N} \boldsymbol{\theta} \mathbf{E} \qquad R_{3} = \frac{\langle N(t)\bar{N}(0)\rangle_{\boldsymbol{\theta},E}^{\text{up}}}{\langle N(t)\bar{N}(0)\rangle_{\boldsymbol{\theta},E}^{\text{down}}} \simeq 1 + d_{N} E \boldsymbol{\theta} t$

E: External electric field

Aoki and Gocksch, PRL63, 1125 (1989); ES, et al., (CP-PACS) PRD75, 034507 (2007); ES et al., PRD78, 014503 (2008)

CPV Form factor

$$\langle n(P_1) | J_{\mu}^{\text{EM}} | n(P_2) \rangle_{\theta} = \bar{u}_N^{\theta} \Big[\underbrace{\frac{F_3^{\theta}(Q^2)}{2m_N} \gamma_5 \sigma_{\mu\nu} Q_{\nu}}_{\text{P,T-odd}} + \underbrace{F_1 \gamma_{\mu} + \frac{F_2}{2m_N} \sigma_{\mu\nu} Q_{\nu}}_{\text{P,T-even}} + \cdots \Big] u_N^{\theta} \\ d_N = \lim_{Q^2 \to 0} F_3(Q^2) / 2m_N$$

ES, et al., (CP-PACS), PRD72, 014504 (2005); Berruto, et al. (RBC) PRD73, 05409 (2006).

Imaginary θ

New generation of imaginary θ action: $\langle Oe^{i\theta Q} \rangle \rightarrow \langle Oe^{-\theta^T Q} \rangle$

T. Izubuchi, Lattice 2007

Recent results

- DWF in Nf=2+1 (RBC/UKQCD) m_{π} = 300--400 MeV
 - AMA is very helpful, cost is reduced to 1/5 or less.
 - Statistical error is more than 40%, and also we need to estimate systematic error (finite size effect).

Nucleon decay from the lattice

Effective operator

Dimension-6 BV operator

$$\mathcal{L}_{\rm GUT} = \mathcal{L}_{\rm SM} + \sum_{i} C_i(\mu) O_i(\mu) / \Lambda_{\rm GUT}^2 + \mathcal{O}((O(\mu) / \Lambda_{GUT}^2)^2)$$

 $O_i(\mu)=(qq)_{\Gamma}(ql)_{\Gamma'}$ "i" labels chirality (Г) and flavor (q,l)

C_i depends on type of GUTs model

Matrix element

Lattice QCD provides each decay channels of W_0 from matrix element;

 $\langle \pi^{0} | (ud)_{\Gamma} u_{\Gamma'} | p \rangle = P_{\Gamma'} \Big[W_{0}^{\Gamma} - \frac{i \not q}{m_{p}} W_{1}^{\Gamma} \Big] u_{p} \qquad \text{Aoki et al. (JLQCD), PRD62, 014506}$ which is extracted from 3-pt function. (2000); Aoki et al. (RBC), PRD75, 014507 (2007)

 W_0 : determine from QCD matrix element (model independent)

Decay rate

$$\Gamma_{p \to \pi^0 e^+} = \frac{m_p}{32\pi^2} \left[1 - \left(\frac{m_e}{m_p}\right)^2 \right]^2 \left| \sum_i C_i W_0^i(p \to \pi^0) \right|^2$$

Precision of W_0 is significant, since the decay rate is affected by twice of that.

How to obtain W_0 from lattice QCD

- The "indirect" method
 - Measurements of low-energy constant via tree level chiral perturbation theory. $W_0^{LR}(p \to \pi^0) \simeq \alpha (1 + D + F) / \sqrt{2} f_0,$

where D and F is given by experiment, and α is given by 2-pt function: $\langle 0|((ud)_R u_L)|p\rangle = \alpha P_L u_p$

S.Aoki et al. (JLQCD), PRD62, 014506 (2000), Y. Aoki et al.(RBC), PRD75, 014507 (2007), Y.Aoki et al. (RBC-UKQCD), PRD78, 054505 (2008)

Easy calculation, BUT it has systematic error due to being based on ChPT.

- The "direct" method
 - Measurement of matrix element extracted from 3-pt function.
 - Rather expensive, while there is no uncertainty depending on models.
 - Provides each channels of decay mode.

S Aoki et al. (JLQCD), PRD62, 014506 (2000), Y.Aoki et al.(RBC), PRD75, 014507 (2007)

Low energy constant (indirect)

Works with DWFs

Quenched QCD (direct/indirect)

Y.Aoki, C. Dawson, J. Noaki, and A. Soni, Phys. Rev. D75, 014507 (2007)

Nf=2+I (indirect)

Y.Aoki et al. (RBC-UKQCD), Phys. Rev. D78, 054505 (2008)

- Large model dependence
- Need to subtract ChPT ambiguity
 ⇒ direct calculation

W₀ (direct)

- DWFs in Nf=2+1 (direct) 24³ × 64 lattice in RBC/UKQCD collaboration, Chiral extrapolation with m=0.005, 0.01, 0.02, 0.03 (m_{π} = 0.3 -- 0.8 GeV)
- Physical kinematics $-\!\!<\!\!\pi^0\!|(ud)_R^{}u_L^{}|p\!\!>$ Estimate all $<\!\!\pi^0\!|(ud)_L^{}u_L^{}|p\!\!>$ systematic errors $< K^0 |(us)_R u_L| p >$ $< K^0 |(us)_L u_L| p >$ Uncertainty is still N_e=2+1, "direct" N_e=2+1 "direct" $- \langle K^{\dagger} | (us)_{R} d_{T} | p \rangle$ large. Quench, "direct" × N_c=2+1 "indirect $\langle K^+|(us)_{T}d_{T}|p\rangle$ (stat + sys error): $- < K^{+} |(ud)_{R} s_{T}| p >$ 30--40% for $p \rightarrow \pi$ $\langle K^+|(ud)_{I}s_{I}|p\rangle$ 20--40% for $p \rightarrow K$ $- \langle K^+ | (ds)_{R} u_{T} | p \rangle$ $-\langle K^{\dagger}|(ds)_{T}u_{T}|p\rangle$ $<\eta |(ud)_{R}u_{T}|p>$ $<\eta |(ud)_{T}u_{T}|p>$ 0.2 0.2 0.15 0 0.05 0.05 0.150.10 0.1 $W_{o}(\mu=2GeV)$ [GeV²] $W_o(\mu=2GeV)$ [GeV²]

Summary and future work

- Lattice study of nucleon EDM & decay
- Precise estimate of non-perturbative contribution
- Need to reduce the statistical + systematic error
 - Nucelon EDM : > 40% stat. error and large sys. error expected
 - Nucleon decay : $p \rightarrow \pi$ channel : 30--40% total error

 $p \rightarrow K$ channel: 20--40% total error

- AMA algorithm is very helpful. Blum, Izubichi, ES, I 208.4349
- Larger lattice size (~5 fm³) at physical point will be available soon. We expect 10-20% error level.

Thank you

Backup

Lattice QCD

In lattice regularization, the path integral of $\langle O \rangle$ is computed by <u>Monte-Carlo integral</u>:

$$\langle O \rangle = Z^{-1} \int D\Psi O(\Psi) e^{-S(\Psi)} \simeq \frac{1}{N} \sum_{i} O(\Psi_i)$$

- Exact QCD calculation (enough large number of sampling N)
- Gauge invariant
- Translational invariant
- Ultraviolet cut-off a (lattice spacing)
 Infrared cut-off V=L₀^D (lattice volume)
- Taking continuum limit, and infinite volume

Lattice QCD

Hadron spectrum in Nf=2+1 QCD

Good agreement with <u>various lattice action and fermion</u> with experimental results !
Kranfold 1209 3469

