GEOLOCATING THE HIGGS

James S. "Jamie" Gainer Brookhaven Forum

University of Florida May 1, 2013

GEOLOCATING THE HIGGS

2

* arXiv:1304.4936

* JG, Lykken, Matchev, Mrenna, Park

MOTIVATION

- Having discovered "a Higgs", we want to measure its properties, in particular its couplings to Z bosons
- Goal 1: Be as general as possible (reduce model dependence)
- Goal 2: Use as few parameters as possible (keep things manageable)
- * To provide a useful framework for presenting experimental results, projections, etc.

PRELIMINARIES

✤ We consider a scalar, X, which is a linear combination of CP eigenstates H (0⁺) and A (0⁻)

 $X \equiv H \cos \alpha - A \sin \alpha.$

- * In general, X is not a CP eigenstate
 - ★ $\alpha = 0$ corresponds to pure 0^+
 - $\star \alpha = \pi/2$ corresponds to pure 0⁻
- We assume that the other mass eigenstate is heavy and can be ignored

EFFECTIVE THEORY

 We write down general CP-conserving couplings of the H and the A to two Z's (CP violation will come from mixing)

$$\mathcal{L} \ni \frac{M_Z^2}{v} H Z^{\mu} \hat{f}^{(H)}_{\mu\nu} Z^{\nu} + \frac{1}{2} H F^{\mu\nu} \hat{f}^{(H)}_{\mu\nu\rho\sigma} F^{\rho\sigma} + \frac{1}{2} A F^{\mu\nu} \hat{f}^{(A)}_{\mu\nu\rho\sigma} F^{\rho\sigma}$$

The f are form factors which generate operators with different symmetry properties.

FORM FACTORS

* CP even couplings which must violate gauge invariance

 $\hat{f}_{\mu\nu}^{(H)} \equiv g_1 g_{\mu\nu} + \frac{g_5}{\Lambda^2} \left(\vec{\partial}_{\mu} \overleftarrow{\partial}_{\nu} + g_{\mu\nu} \vec{\partial}^{\rho} \overleftarrow{\partial}_{\rho} \right)$ $+ \frac{g_6}{\Lambda^2} g_{\mu\nu} \left(\overleftarrow{\Box} + \overrightarrow{\Box} \right) + \mathcal{O} \left(\frac{1}{\Lambda^4} \right)$ $\mathcal{N}ote: g_5, g_6 \text{ operators are dimension-5}$

* CP even couplings which may preserve gauge invariance

$$\hat{f}^{(H)}_{\mu\nu\rho\sigma} \equiv \frac{g_2}{\Lambda} g_{\mu\rho} g_{\nu\sigma} + \frac{g_3}{\Lambda^3} g_{\mu\rho} \partial_{\nu} \partial_{\sigma} + \mathcal{O}\left(\frac{1}{\Lambda^5}\right)$$

 $\hat{f}_{\mu\nu\rho\sigma}^{(A)} = \frac{g_4}{\Lambda} \varepsilon_{\mu\nu\rho\sigma} + \mathcal{O}\left(\frac{1}{\Lambda^5}\right)$

*

COUPLINGS

* Keeping only the lowest dimensional terms from each of the three form factors we obtain the following Lagrangian for the coupling of the mass eigenstate X to two Z bosons.

$$\mathcal{L} = X \left[\kappa_1 \frac{m_Z^2}{v} Z_\mu Z^\mu + \frac{\kappa_2}{2v} F_{\mu\nu} F^{\mu\nu} + \frac{\kappa_3}{2v} F_{\mu\nu} \tilde{F}^{\mu\nu} \right]$$

* These operators cover all possible Lorentz structures in the amplitude

$$A(X \to V_1 V_2) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_X^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right)$$

Gao, Gritsan, Guo, Melnikov, Schulze, Tran (2010) De Rújula, Lykken, Pierini, Rogan, Spiropulu (2010) Bolognesi, Gao, Gritsan, Melnikov, Schulze, Tran, Whitbeck (2012)

REAL OR COMPLEX: THAT IS THE QUESTION

- Lagrangians must be real, so the κ's must be real
- * The amplitude receives corrections from loops
 - ★ Contributions from heavy particle loops are real
 - ★ Contributions from light particle loops are complex
 - These complex contributions can 0^+_m be mimicked with complex κ 's

RATE CONSTRAINT

- ***** Consider κ_1 , κ_2 , κ_3 real
- Measured rate implies correlations among couplings
 - Defines an ellipsoidal
 "pancake" in κ space
 - ★ Larger (smaller) total rate: pancake inflated (deflated), but shape stays the same
- Removes one degree of freedom

 $\Gamma(X \to ZZ) = \Gamma_{SM} \sum \gamma_{ij} \kappa_i \kappa_j$

PARAMETRIZING THE PANCAKE

- Different points on the pancake correspond to different admixtures of Higgs couplings, but constant rate
- How should we parametrize the surface of the pancake?
- ※ One choice: spherical coordinates in к space

κ_1	=	$\kappa\sin\theta\cos\phi$
κ_2	=	$\kappa\sin\theta\sin\phi$
κ_3	=	$\kappa\cos heta$

Map of κ as function of θ and ϕ

PARAMETRIZING THE PANCAKE 2

- Alternatively one can change variables to deform the pancake into an "equal rate sphere"
- * This involves a linear transformation:

GEOLOCATING THE HIGGS

Any given value of $(\kappa_1, \kappa_2, \kappa_3)$, corresponding to a given rate, maps to a point on the sphere

12

(-0.945804, -3.88525, 2.44522) $(\phi, \lambda) = (29.64945, -82.3486)$

CUTS AND EFFICIENCIES

* If we use the values of γ_{ij} before cuts to construct our sphere, then we find significant variation in the acceptance x efficiency at different points on the sphere.

CUTS AND EFFICIENCIES

The main driver of the changes in efficiency on the sphere seems to be the invariant mass of the less massive intermediate Z^{*}

(Choi, Miller, Muhlleitner, and Zerwas, 2003),

(Godbole, Miller, and Muhlleitner, 2007), (Boughezal, LeCompte, and F. Petriello, 2012),

etc.

EXAMPLE ANALYSIS

- We illustrate the use of the sphere for displaying results with a toy analysis
- * We generate 1000 pseudoexperiments
 - 300 DF signal events for each of 4 benchmark points (~300 fb⁻¹ at 14 TeV): three pure states and one completely mixed state
 - * Impose cuts (p_T, $|\eta|$, M_{Z1}, M_{Z2})
 - Find the point on the sphere that maximizes the likelihood for each pseudoexperiment and plot

EXAMPLE ANALYSIS

* Note: a point and its antipode are effectively equivalent

OTHER SPHERES

$$\mathcal{L} = X \left[\kappa_1 \frac{m_Z^2}{v} Z_\mu Z^\mu + \frac{\kappa_2}{2v} F_{\mu\nu} F^{\mu\nu} + \frac{\kappa_3}{2v} F_{\mu\nu} \tilde{F}^{\mu\nu} \right]$$

Scenario 1: κ₁ = 0. κ₂ and κ₃ arbitrary and complex.
 Coupling can be gauge invariant.
 Example: X is SM singlet.

- **Scenario 2**: $\kappa_2 = 0$. Mixing of SM scalar and pseudoscalar.
- **Scenario 3:** $\kappa_3 = 0$. Arbitrary CP-even scalar.

EXAMPLE: SCENARIO 2

***** Now we allow κ_1 , κ_3 to be complex

$$\mathcal{L} = X \left[\kappa_1 \frac{m_Z^2}{v} Z_\mu Z^\mu + \frac{\kappa_2}{2v} F_{\mu\nu} F^{\mu\nu} + \frac{\kappa_3}{2v} F_{\mu\nu} \tilde{F}^{\mu\nu} \right]$$

- Degrees of freedom: 2 magnitudes and 2 phases
- * One overall phase is irrelevant
- ***** We can call relative phase ϕ_{13}
- * Rate restricts overall magnitude of couplings
- * Remaining degree of freedom is ratio of couplings

$$x_{13} = \frac{|\kappa_3|^2}{|\kappa_1|^2 + |\kappa_3|^2} = \sin^2 \theta_{13}$$

CONCLUSIONS

- While many operators may affect the coupling of a scalar to bosons, it is reasonable to focus on three lowest dimensional operators from each class of couplings
- * Overall rate eliminates one degree of freedom
- * We propose the following scenarios all of which involve two degrees of freedom:
 - ***** Three real couplings (general mixture of 0^+_{m} , 0^+_{h} , 0^-)
 - * $\kappa_1 = 0, \kappa_2, \kappa_3 \text{ complex: } \theta_{23}, \phi_{23}$
 - * $\kappa_2 = 0$, κ_1 , κ_3 complex: θ_{13} , ϕ_{13}
 - * $\kappa_3 = 0, \kappa_1, \kappa_2 \text{ complex: } \theta_{12}, \phi_{12}$

* We look forward to locating the Higgs on the sphere!

BACKUP SLIDES

EXPRESSIONS FOR CHANGE OF VARIABLES

$$x_i = \sum_j O_{ij} \kappa_j$$

where $O_{21} = O_{31} = O_{32} = 0$ and

$$O_{1i} = \gamma_{1i} / \sqrt{\gamma_{11}}, \quad (i = 1, 2, 3)$$

$$O_{2i} = \frac{\gamma_{11} \gamma_{2i} - \gamma_{12} \gamma_{1i}}{\sqrt{(\gamma_{11} \gamma_{22} - \gamma_{12}^2) \gamma_{11}}}, \quad (i = 2, 3)$$

$$O_{33} = \sqrt{\det ||\gamma_{ij}|| / (\gamma_{11} \gamma_{22} - \gamma_{12}^2)}$$

MORE MOLLWEIDE

Top two and bottom left plots show κ values on the sphere.

RATES FOR VARIOUS PROCESSES

Process	γ_{11}	γ_{22}	γ_{33}	γ_{12}
$X \to ZZ \ (DF)$	1	0.090	0.038	-0.250
$X \to ZZ$ (SF)	1	0.081	0.032	-0.243
$X \to \gamma \gamma$	0	1	1	0
$X \to WW$	1	0.202	0.084	-0.379
	a	fter cuts		and and the
$X \to ZZ$ (DF)	1	0.101	0.037	-0.277

* Avoid variable efficiencies: use γ_{ij} after cuts

* Note also that γ_{ij} are substantially different in the same flavor and different flavor cases