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MOTIVATION

Having discovered “a Higgs”, we want to measure its 
properties, in particular its couplings to Z bosons

Goal 1: Be as general as possible (reduce model 
dependence)

Goal 2: Use as few parameters as possible (keep things 
manageable)

To provide a useful framework for presenting 
experimental results, projections, etc.
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PRELIMINARIES

We consider a scalar, X, which is a linear combination 
of  CP eigenstates H (0+) and A (0-)

In general, X is not a CP eigenstate

★ α = 0 corresponds to pure 0+ 

★ α = π/2 corresponds to pure 0-

We assume that the other mass eigenstate is heavy and 
can be ignored
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EFFECTIVE THEORY
We write down general CP-conserving couplings of  

the H and the A to two Z’s 
(CP violation will come from mixing)

The f  are form factors which generate 
operators with different symmetry properties. 
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CP even couplings which must violate gauge invariance

CP even couplings which may preserve gauge invariance

CP Odd Couplings

FORM FACTORS

Note: g5, g6 operators are  
dimension-5
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Keeping only the lowest dimensional terms from each of  
the three form factors we obtain the following Lagrangian 
for the coupling of  the mass eigenstate X to two Z bosons.

These operators cover all possible Lorentz structures in the amplitude 

Gao, Gritsan, Guo, Melnikov, Schulze, Tran (2010)
De Rújula, Lykken, Pierini, Rogan, Spiropulu (2010)

Bolognesi, Gao, Gritsan, Melnikov, Schulze, Tran, Whitbeck (2012)

COUPLINGS
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REAL OR COMPLEX: 
THAT IS THE QUESTION

Lagrangians must be real, so the κ’s 
must be real

The amplitude receives corrections 
from loops

★ Contributions from heavy particle 
loops are real

★ Contributions from light particle 
loops are complex

• These complex contributions can 
be mimicked with complex κ’s
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RATE CONSTRAINT
Consider κ1, κ2, κ3 real

Measured rate implies 
correlations among couplings

★ Defines an ellipsoidal 
“pancake” in κ space

★ Larger (smaller) total rate: 
pancake inflated (deflated),
but shape stays the same

Removes one degree of  
freedom
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(Tree level) SM:
(κ1,κ2,κ3) =

(1,0,0)



Different points on the pancake correspond to different 
admixtures of  Higgs couplings, but constant rate  

How should we parametrize the surface of  the pancake?

One choice: spherical coordinates in κ space

PARAMETRIZING THE PANCAKE 1

Map of  κ as function 
of  θ and φ
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PARAMETRIZING THE PANCAKE 2

Alternatively one can change variables to deform 
the pancake into an “equal rate sphere”

This involves a linear transformation:

We go from to
using

DF, before cuts
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GEOLOCATING THE HIGGS

Any given value of  (κ1, κ2, κ3), corresponding to a 
given rate, maps to a point on the sphere

(−0.945804, −3.88525, 2.44522)
(φ, λ) = (29.64945, −82.3486)
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CUTS AND EFFICIENCIES

If  we use the values of  γij before cuts to construct our sphere, 
then we find significant variation in the acceptance x efficiency 
at different points on the sphere.

Efficiency varies 
from ~35% to ~55% 

pT > 7 GeV
|η| < 2.5 for 
electrons 

pT > 5 GeV
|η| < 2.4 for muons

M1 > 40 GeV

M2 > 12 GeV
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CUTS AND EFFICIENCIES
The main driver of  the 
changes in efficiency on the 
sphere seems to be the 
invariant mass of  the less 
massive intermediate Z*

(Choi, Miller, Muhlleitner, and Zerwas, 

2003),

(Godbole, Miller,  and Muhlleitner, 2007),

(Boughezal, LeCompte, and F. Petriello, 

2012),

etc.
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EXAMPLE ANALYSIS

We illustrate the use of  the sphere for displaying results 
with a toy analysis

We generate 1000 pseudoexperiments 

300 DF signal events for each of  4 benchmark points 
(~300 fb-1 at 14 TeV): three pure states and one 
completely mixed state 

Impose cuts (pT, |η|, MZ1, MZ2)

Find the point on the sphere that maximizes the 
likelihood for each pseudoexperiment and plot
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EXAMPLE ANALYSIS

Note: a point and its antipode are effectively equivalent
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OTHER SPHERES

Scenario 1: κ1 = 0.  κ2 and κ3 arbitrary and complex.  
Coupling can be gauge invariant.  
Example: X is SM singlet.

Scenario 2: κ2 = 0.  Mixing of  SM scalar and 
pseudoscalar.

Scenario 3: κ3 = 0.  Arbitrary CP-even scalar.
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EXAMPLE: SCENARIO 2

Now we allow κ1, κ3 to be complex

Degrees of  freedom: 2 magnitudes and 2 phases

One overall phase is irrelevant

We can call relative phase φ13

Rate restricts overall magnitude of  couplings

Remaining degree of  freedom is ratio of  couplings
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CONCLUSIONS
While many operators may affect the coupling of  a scalar to bosons, it is reasonable 
to focus on three lowest dimensional operators from each class of  couplings

Overall rate eliminates one degree of  freedom

We propose the following scenarios all of  which involve two degrees of  freedom:

Three real couplings (general mixture of  0+m, 0+h, 0-)

κ1 = 0, κ2, κ3 complex: θ23, φ23

κ2 = 0, κ1, κ3 complex: θ13, φ13

κ3 = 0, κ1, κ2 complex: θ12, φ12

We look forward to locating the Higgs on the sphere!
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BACKUP SLIDES
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EXPRESSIONS FOR CHANGE OF 
VARIABLES
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MORE MOLLWEIDE
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Top two and bottom left plots show κ values on the sphere.



RATES FOR VARIOUS PROCESSES

Avoid variable efficiencies: use γij after cuts

Note also that γij are substantially different in the same 
flavor and different flavor cases
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