Constraining Light Dark Matter with Low-Energy e⁺e⁻ Colliders

Yi-Ming Zhong

C.N.Yang Institute for Theoretical Physics, Stony Brook University

In collaboration with R. Essig, J. Mardon, M. Papucci, T. Volansky

arXiv: 1305.xxxx

Brookhaven Forum, May 1st, 2013

Outline

- Introduction
- Searches for light dark matter (LDM) at BaBar
- Summary and prospects

Going beyond WIMPs

Weakly Interacting Massive Particles (WIMPs) are popular DM candidates and received much attention from collider/direct/indirect detection

Going beyond WIMPs

Weakly Interacting Massive Particles (WIMPs) are popular DM candidates and received much attention from collider/direct/indirect detection

Going beyond WIMPs

Weakly Interacting Massive Particles (WIMPs) are popular DM candidates and received much attention from collider/direct/indirect detection

LDM can be also probed by these experiments

Typical strategy for LEP/Tevatron/LHC DM searches:

I. Search for a mono-jet/photon/lepton/Z, which can rise from initial state radiations (ISR)

- I. Search for a mono-jet/photon/lepton/Z, which can rise from initial state radiations (ISR)
- 2. Excess could indicate DM; No excess, place bounds

- I. Search for a mono-jet/photon/lepton/Z, which can rise from initial state radiations (ISR)
- 2. Excess could indicate DM; No excess, place bounds
- 3. Introduce effective contact terms with cut-off scales Λ . Place bounds on Λ

- I. Search for a mono-jet/photon/lepton/Z, which can rise from initial state radiations (ISR)
- 2. Excess could indicate DM; No excess, place bounds
- 3. Introduce effective contact terms with cut-off scales Λ . Place bounds on Λ
- 4. Translate bounds on Λ to bounds on direct/indirect detections

Look at BaBar

BarBar is the B-factory

at SLAC, 1999-2008

BaBar is an ideal place for LDM search:

- I. Low energy e^+e^- collision with $\sqrt{s=10.58}$ GeV
- 2. Sensitive to both DM-quark/gluon and DMelectron couplings
- 3. BaBar in total has ~500/fb data. But data with mono-photon trigger is only 30/fb (122×10⁶ Y(3S) decays). Still a lot!

BaBar's Results

BaBar searched for $\Upsilon(3S) \rightarrow \chi A^0 \rightarrow \chi + \text{invisible}$. No significant excess of events in the search range (2.2< E_{χ} <5.5 GeV)

How to Produce DM at BaBar

Two ways:

- I. Through $\Upsilon(3S)$ decays (BaBar, 0808.0017; Yeghiyan, 0909.4919, 0910.2071)
- 2. Through direct e⁺e⁻ collisions (New)

Search Strategy

Consider decay with a mediator to be a vector/ pseudo-vector/scalar/pseudo-scalar

e.g. vector mediator: apply the hidden photon model

Integrating out a heavy mediator provides an effective contact term

Search Strategy

(a) Off-shell Heavy Mediators

 $m_{A'} > \sqrt{s} = 10.58 \text{ GeV}, A' \text{ is off-shell}$

60

Choose $m_{A'}$ = 15 GeV. Place bounds on $m_{A'}/\sqrt{g_e g_{\chi}}$

(a) Off-shell Heavy Mediators

 $m_{A'} > \sqrt{s} = 10.58 \text{ GeV}, A' \text{ is off-shell}$

Choose $m_{A'}$ = 15 GeV. Place bounds on $m_{A'}/\sqrt{g_e g_{\chi}}$

Are Those Bounds Competitive?

For a hidden photon A', \in is a small coupling and constrained by various experiments already

Define the " \in +perturbativity" bound: $\alpha_X \leq I \& \in$ is constrained by SM precision measurements and anomalous magnetic moment of μ^- and e^-

Are Those Bounds Competitive?

Fix m_X to be light and vary m_{A^\prime}

(b) On-Shell Light Mediators

 $2m_X < m_{A'} < \sqrt{s}$ or $m_{A'} < 2m_e$, $m_{A'} < 2m_X$, A' is produced on-shell and decays to invisible Use BaBar's upper limits on branching ratio to constrain g_e

(c) Off-Shell Light Mediators

 10^{2}

 $MeV < m_{A'} < 2m_X$, produce DM pairs via off-shell A' Bounds on $m_{A'}/\sqrt{g_e g_{\chi}}$ depends on $g_e g_X, m_{A'}, m_X$

Competitive with **E**+perturbativity bound mx≲3.I GeV Competitive with LEP bounds: mx≲2.9 GeV For a light mediator,

constraints

Translate to Direct Detection

In direct detections, DM-nucleon/electron scattering takes place with a very low recoil energy. Effective contact terms are valid.

$$\Lambda = m_{A'} / \sqrt{g_e g_{\chi}}$$

Translate vector/pseudo-vector/scalar coupling bounds into direct detection limits

Translate to Direct Detection

In direct detections, DM-nucleon/electron scattering takes place with a very low recoil energy. Effective contact terms are valid.

$$\Lambda = m_{A'} / \sqrt{g_e g_{\chi}}$$

Translate vector/pseudo-vector/scalar coupling bounds into direct detection limits

Summary and Prospects

To search LDM with a ~GeV mediator, lowenergy e⁺e⁻ colliders are more competitive than high energy colliders.

High luminosity is more helpful for small signal huntings

Future B-factories, like Belle-II, will obtain 50 /ab data by 2021, 100 times more than BaBar data

A mono-photon trigger will be very helpful for LDM/hidden mediator huntings!