Very Light Stops at the LHC

Abhishek Kumar

TRIUMF

w/ K. Krizka and D. Morrissey

1212.4856

Why Light Stops?

- Third generation superpartners can be light in MSSM
- Large *y*_t
 - RGE running pushes down soft masses
 - Large L-R mixing \rightarrow lighter eigenstate
- Electroweak Baryogenesis and MSSM
 Carena, Nardini, Quiros, Wagner
- Higgs and Naturalness additional fields/gauge groups

Stop mass matrix

$$m_{\tilde{t}}^{2} = \begin{pmatrix} M_{Q_{3}}^{2} + m_{t}^{2} + \Delta_{L} & m_{t}X_{t} \\ m_{t}X_{t} & M_{U_{3}}^{2} + m_{t}^{2} + \Delta_{R} \end{pmatrix}$$

- $m_{\tilde{t}}$ depends on $(M_{Q_3}^2, M_{U_3}^2, X_t)$
- $X_t = A_t \mu / \tan \beta$ parametrizes L R mixing.

•
$$\tilde{t}_1 \sim \tilde{t}_R$$
: $M_{U_3}^2 \sim \text{small or} < 0$

•
$$\tilde{t}_1 \sim \tilde{t}_L$$
: $M_{Q_3}^2 \sim \text{small}$

MSSM spectrum

- \tilde{t}_1 is NLSP, $m_{\tilde{t}_1} \in [100\text{-}350]$ GeV, in particular $m_{\tilde{t}_1} < m_t$
- $\tilde{\chi}_1^0$ is LSP
- $\tilde{\chi}_1^{\pm}$ lightish
- Other squarks, sleptons, gluino $\sim {\rm TeV}$

Decay modes

$$\begin{array}{ll} \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 & m_{\tilde{t}_1} - m_t > 0 \\ \tilde{t}_1 \rightarrow b \tilde{\chi}_1^+ & m_{\tilde{t}_1} - m_{\tilde{\chi}_1^+} > m_b \end{array} \right\} \qquad \text{LHC}$$

$$\begin{split} \tilde{t}_1 &\to b \tilde{\chi}_1^0 W^+ & \Delta m = m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} > m_W + m_b \\ \tilde{t}_1 &\to b \tilde{\chi}_1^0 f \bar{f}' & m_b < \Delta m < m_W + m_b \\ \tilde{t}_1 &\to c \tilde{\chi}_1^0 & \Delta m < m_b & \text{CDF} \end{split}$$

4B and FV mode

• 4B mode: SUSY-HIT

FV mode: Minimal Flavour Violation

Minimal Flavour Violation (MFV)

• If $Y_u = Y_d = 0$, then $G_F = SU(3)_{Q_L} \otimes SU(3)_{U_R} \otimes SU(3)_{D_R}$ (quarks)

$$\mathcal{L}_{yuk} = Y_u \bar{Q}_L H^* u_R + Y_d \bar{Q}_L H d_R$$
$$Q_L \sim (3, 1, 1) \qquad u_R \sim (1, 3, 1) \qquad d_R \sim (1, 1, 3)$$

- Impose G_F on \mathscr{L}_{SM} by $Y_u \sim (3, \overline{3}, 1), Y_d \sim (3, 1, \overline{3})$
- Y_u, Y_d spurions and $\mathscr{G}_F \sim Y_{u,d}$
- MFV: NP is also invariant under G_F

MFV in MSSM

Soft masses are constrained by MFV

$$\mathbf{Y}_u = \lambda_u \qquad \mathbf{Y}_d = V_{CKM} \lambda_d \qquad (3 \times 3 \text{ matrices})$$

$$\tilde{m}_{Q_L}^2 = \tilde{m}^2 (a_1 \mathbf{1} + b_1 \mathbf{Y}_u \mathbf{Y}_u^{\dagger} + b_2 \mathbf{Y}_d \mathbf{Y}_d^{\dagger})$$

$$A_u = A (a_4 \mathbf{1} + b_7 \mathbf{Y}_d \mathbf{Y}_d^{\dagger}) \mathbf{Y}_u$$

• $a_i, b_i \sim \mathcal{O}(1)$

- FV width depends on stop L-R mixing, $\tilde{\chi}_1^0$ composition
- FV can dominate over 4B even when $\Delta m > m_b$

Phase Diagrams

• Fix $m_{\tilde{t}_1} = 225 \,\text{GeV}, M_2 = 350 \,\text{GeV}, \tan\beta = 10$

- The regions are 2B (gray), 3B (red), 4B (yellow) and FV (green)
- $\tilde{\chi}_1 \sim \text{Higgsino-like for small-}\mu$, large- M_1 (large M_2)
- $\tilde{\chi}_1 \sim \text{Bino-like for large-}\mu$, small- M_1 (large M_2)
- Let's search for them!

Analysis

- Generate NP signal, not SM background
- Study FV, 4B and 3B mode separately (BR=100%) in $m_{\tilde{t}_1} m_{\tilde{\chi}_1^0}$ plane
- Apply model-independent upper bounds to constrain NP

Generating a signal

• $N = \sigma \times A$, where $A = \frac{\# \text{ events passing cuts}}{\text{total events}}$

- Many SUSY searches have high MET requirement (*e.g.* ATLAS jets+ $\not\!\!E_T$ with $m_{eff} = \sum_j p_T + \not\!\!E_T > 1 \text{ TeV}$)
- Small Δm region soft jets
- Very low acceptance for a pure stop sample
- Important effects from QCD initial state radiation

Initial State Radiation (ISR)

Alwall, Le, Lisanti, Wacker

- Boosted stops (back-to-back) give small MET
- $\tilde{\chi}_1^0$ s momenta unbalanced due to ISR \rightarrow large MET

The stop sample

- Indirect LHC searches probe various kinematic variables
- Want to constrain light stop decays for all relevant searches
- Generate search specific stop samples *or* find an optimal stop sample
- Optimal sample: $\tilde{t}\tilde{t}^*j$ with $p_{T,j1} = 150 \text{GeV}$

Production cross-section

- $\tilde{t}\tilde{t}^*j$ cross-section at NLO
- $\sigma_{\tilde{t}\tilde{t}^*j} \sim 7 \text{ pb} 0.05 \text{ pb}$
- Allow $\pm 50\%$ variation for higher-order effects
- Generate separate samples with BR=100% for FV, 4B and 3B mode

Stop limits: Tevatron

• Cuts:

- $\not\!\!E_T \ge 50 \text{ GeV}$
- $\geq 2j$ with $p_T \geq 35, 25, ...$ GeV
- No constraints for $\Delta m < 30 \,\text{GeV}$

Stop limits: LHC

Relevant LHC searches

- FV $(j+0l+\not\!\!E_T)$:
 - Monojet
 - Jets+ $\not\!\!E_T$
 - *b*-jet searches (*c* mistag $\sim 10\%$)
 - Razor and *m*_{T2}

• 4B
$$(j+b+\geq 0l+\not\!\!\!E_T)$$
:

- Monojet
- Jets+ $\not\!\!E_T$
- *b*-jet searches
- Razor and *m*_{T2}
- 3B $(j+b+\geq 0l+\not\!\!\!E_T)$:
 - *b*-jet searches
 - Razor and *m*_{T2}

ATLAS searches ($\sqrt{s} = 7 \,\text{TeV}$)

ATLAS Analysis (\mathscr{L}/fb^{-1})	Final states	Decay channel
Monojet (1.00)	$\leq 1-3j, 0l$	FV, 4B
Jets+ $\not\!$	$\geq 2-4j, 0l$	FV, 4B
Monojet (4.7)	$\leq 2j, 0l$	FV, 4B
$j + b + \not\!$	$\geq 3j, \geq 1b, 0l$	-
$j + l + \not\!$	\geq 3-4 j , 1 l	-
$j+b+l+\not\!$	$\geq 4j, \geq 1b, 1l$	-
$j+b+l+\not\!$	\geq 3-4 <i>j</i> \geq 1 <i>b</i> ,0-1 <i>l</i>	-
$\widetilde{t}\widetilde{t}^* \to ll \ (4.7)$	$\geq 1j, 1l$	-
$j+l+b+\not\!\!\!E_T (4.7)$	$\geq 4j, 1b, 1l$	-
$j + b + \not\!$	$\geq 4j, \geq 2b, 1l$	-

CMS searches ($\sqrt{s} = 7 \,\text{TeV}$)

CMS Analysis (\mathscr{L}/fb^{-1})	Final states	Decay channel
Monojet (1.1)	$\leq 2j, 0l$	FV, 4B
$j + \not\!$	$\geq 3j, 0l$	-
α_T (1.14)	$\geq 2j, 0-1l(\mu), 0-1\gamma$	-
$j + b + \not\!$	\geq 3-4 j , \geq 1 b 1 l , \geq 1 b	FV, 4B
Razor (4.4)	$\geq 2j, 0-2l$	FV, 4B, 3B
$j + l + \not\!$	\geq 3-4 <i>j</i> ,1 <i>l</i>	-
$M_{\rm T2}$ (1.1)	\geq 3-4 j , \geq 0-1 b , 0 l	FV, 4B, 3B
Monojet (5.0)	$\leq 2j, 0l$	FV, 4B
$j + \not\!$	$\geq 3j, 0l$	FV, 4B
α_T (4.98)	$\geq 2j, 0-3b, 0l,$	-
$j + b + \not\!$	\geq 3 <i>j</i> , 1-3 <i>b</i> , 0 <i>l</i>	FV, 4B, 3B
Razor (4.7)	$\geq 2j, \geq 1b, 0-2l$	FV, 4B, 3B
<i>M</i> _{T2} (4.73)	\geq 3-4 j , \geq 0-1 b , 0 l	FV, 4B, 3B

FV and **4B**: Monojets and Jets+ $\not\!\!E_T$

FV and 4B: *b*-jet searches

FV and 4B: *m*_{*T*2}

3B: *b***-jet searches**

Conclusions

- 3rd generation superpartners can be light (and interesting) in MSSM
- Current LHC searches put strong limits on light stops (theorist-level)
- Hopefully LHC will constrain these decay modes soon