Direct Measurement of Time-Reversal Asymmetry at BABAR

Chih-hsiang Cheng
Caltech
on behalf of BABAR Collaboration
Brookhaven Forum
BNL, 2013/O5/O1-O3

BABAR

Time-reversal symmetry

- Laws of physics have an intrinsic, microscopic $t \rightarrow-t$ symmetry if they are
- invariant under reversal of motion ($\boldsymbol{v} \rightarrow-\boldsymbol{v}$, exchange of in and out states),
- balanced in detail: $P(\mathrm{a}+\mathrm{b} \rightarrow \mathrm{c}+\mathrm{d})=P(\mathrm{c}+\mathrm{d} \rightarrow \mathrm{a}+\mathrm{b})$.
- It is not about the arrow of time
- T asymmetry of a macroscopic state
- nature of thermodynamics

Scenarios of time-reversal violation

- A permanent electric dipole moment (EDM) of a particle (with a spin) violates T-reversal symmetry (as well as parity). No evidence has been observed yet.
- Difference in time-reversed processes: $P(|\mathrm{i}\rangle \rightarrow|\mathrm{f}\rangle)$ vs. $P(|\mathrm{f}\rangle \rightarrow|\mathrm{i}\rangle)$
- $v_{e} \rightarrow v_{\mu}$ vs. $v_{\mu} \rightarrow v_{e}$: stable system, but needs future facility with a long baseline.
- $|i\rangle \rightarrow \mid$ decay product \rangle vs. \mid decay product $\rangle \rightarrow|i\rangle$: unstable system, often very difficult to prepare the initial state of time-reversed process.
- Assume CPT invariance, observing CP asymmetry indicates T violation.
- $C P$ violation is established in neutral kaon and bottom mesons.

T violation in meson decays

- Can we search for T violation in known $C P$-violating processes?
- Search in decay

$$
\mathrm{CP}\left\{\begin{array} { l }
{ B ^ { 0 } \rightarrow K ^ { + } \pi ^ { - } , \mathrm { R } _ { 1 } } \\
{ \overline { B } ^ { 0 } \rightarrow K ^ { - } \pi ^ { + } , \mathrm { R } _ { 2 } }
\end{array} \leftarrow \mathrm { CPT } \left[\begin{array}{l}
K^{-} \pi^{+} \rightarrow \bar{B}^{0}, \mathrm{R}_{1} \\
K^{+} \pi^{-} \rightarrow B^{0}, \mathrm{R}_{2} \\
\text { Unable to perform the T test: }
\end{array}\right.\right.
$$

- The strong processes will swamp the feeble weak processes.
- Search in mixing
 $\overline{P^{0}} \begin{array}{r}\stackrel{8}{8}+0.04 \\ \\ 0.03\end{array}$

$$
\begin{aligned}
& K^{0} \rightarrow \bar{K}^{0} \\
& B^{0} \rightarrow \bar{B}^{0}
\end{aligned}
$$

CP

$$
\begin{aligned}
\bar{K}^{0} & \rightarrow K^{0} \\
\bar{B}^{0} & \rightarrow B^{0}
\end{aligned}
$$

PLB444 (1998), 43

$$
\left\langle\frac{R\left(\overline{\mathrm{~K}}_{t=0}^{0} \rightarrow \mathrm{e}^{+} \pi^{-} v_{t=\tau}\right)-R\left(\mathrm{~K}_{t=0}^{0} \rightarrow \mathrm{e}^{-} \pi^{+} \bar{v}_{t=\tau}\right)}{R\left(\overline{\mathrm{~K}}_{t=0}^{0} \rightarrow \mathrm{e}^{+} \pi^{-} v_{t=\tau}\right)+R\left(\mathrm{~K}_{t=0}^{0} \rightarrow \mathrm{e}^{-} \pi^{+} \bar{v}_{t=\tau}\right)}\right\rangle=\left(6.6 \pm 1.3_{\text {stat }} \pm 1.0_{\mathrm{syst}}\right) \times 10^{-3}
$$

$C P$ in mixing/decay interference

- $\Upsilon(4 \mathrm{~S})$ decays to a pair of B mesons in a coherent $\mathrm{L}=1$, antisymmetry quantum state.

$$
\mid i>=1 / \sqrt{2}\left[B^{0}\left(t_{1}\right) \bar{B}^{0}\left(t_{2}\right)-\bar{B}^{0}\left(t_{1}\right) B^{0}\left(t_{2}\right)\right]
$$

- Once one B decays to a basis state, the other collapses to the orthogonal state. So the first decay "tags" the initial state of the

$$
\langle\Delta z\rangle \sim 250 \mu m
$$

Take advantage of entangled quantum state

- The basis can be projected by $C P$ states as well

$$
\begin{aligned}
\mid i> & =1 / \sqrt{2}\left[B^{0}\left(t_{1}\right) \bar{B}^{0}\left(t_{2}\right)-\bar{B}^{0}\left(t_{1}\right) B^{0}\left(t_{2}\right)\right] \\
& =1 / \sqrt{2}\left[B_{+}\left(t_{1}\right) B_{-}\left(t_{2}\right)-B_{-}\left(t_{1}\right) B_{+}\left(t_{2}\right)\right]
\end{aligned}
$$

- $\quad B$ meson can start in B_{+}or B_{-}state at $\mathrm{t}=\mathrm{o}$.
- $\quad C P$ tag, full reconstruction

$$
\begin{aligned}
& B_{-}: J / \psi K_{S}^{0} \\
& B_{+}: J / \psi K_{L}^{0}
\end{aligned}
$$

- Flavor tag, inclusive reconstruction; extract features to determine b-quark content.
\bar{B}^{0}

$$
\begin{array}{cc}
\left|B^{0}\right\rangle=|\bar{b} d\rangle & \left|\bar{B}^{0}\right\rangle=|b \bar{d}\rangle \\
\ell^{+} & \ell^{-} \\
K^{+} & K^{-} \\
\text {etc. } & \text { etc. }
\end{array}
$$

T reversal

T reversal

T-reversal processes

- Define processes of interest and their T-transformed counterparts:

Reference (X, Y)		T-Transformed	
$B^{0} \rightarrow B_{+}$	$\left(\ell^{-}, J / \psi K_{L}^{0}\right)$	$B_{+} \rightarrow B^{0}$	$\left(J / \psi K_{S}^{0}, \ell^{+}\right)$
$B^{0} \rightarrow B_{-}$	$\left(\ell^{-}, J / \psi K_{S}^{0}\right)$	$B_{-} \rightarrow B^{0}$	$\left(J / \psi K_{L}^{0}, \ell^{+}\right)$
$\bar{B}^{0} \rightarrow B_{+}$	$\left(\ell^{+}, J / \psi K_{L}^{0}\right)$	$B_{+} \rightarrow \bar{B}^{0}$	$\left(J / \psi K_{S}^{0}, \ell^{-}\right)$
$\bar{B}^{0} \rightarrow B_{-}$	$\left(\ell^{+}, J / \psi K_{S}^{0}\right)$	$B_{-} \rightarrow \bar{B}^{0}$	$\left(J / \psi K_{L}^{0}, \ell^{-}\right)$

(X, Y) is the reconstructed final states (tag, reco.)

In total we can build:

- 4 independent T comparisons
- 4 independent $C P$ comparisons
- 4 independent CPT comparisons
T implies comparison of:

1) Opposite Δt sign
2) Different reco states $\left(\psi K_{S}\right.$ v. $\left.\psi K_{L}\right)$
3) Opposite flavor states $\left(B^{0}\right.$ v. $\left.\bar{B}^{0}\right)$

BABAR detector at PEP-II

Dataset

Reconstructed modes

	Category	Decay(s)
	$\cdots \bar{c} K_{s}^{0}$	$B^{0} \rightarrow J / \psi K_{S}^{0}$
		$B^{0} \rightarrow \psi(2 S) K_{S}^{0}$
		$B^{0} \rightarrow \chi_{c 1} K_{S}^{0}$
	$c \bar{c} K_{L}^{0}$	$B^{0} \rightarrow J / \psi K_{L}^{0}$
	$B_{\text {flav }}^{- \text {-a }}$	$B^{\sigma \cdots} \rightarrow D^{*} \pi \bar{\sim}\left(\bar{\rho}, a_{1}\right)$
	(high statistics)	$B^{0} \rightarrow J / \psi K^{* 0}$
	Control sample$\bar{c} K^{ \pm}, J / v K^{* \pm}$ $c \bar{c} K^{ \pm}, J / \psi K^{* \pm}$	$B^{+} \rightarrow J / \psi K^{+}$
		$B^{+} \rightarrow \psi(2 S) K$
		$B^{+} \rightarrow J / \psi K^{*+}$

As of 2008/04/11 00:00

Signal selection

- $C P$ final states are fully reconstructed, and selected using
- Beam-energy substituted mass $m_{\mathrm{ES}}=\sqrt{E_{\text {beam }}^{*}-\left|\vec{p}_{B}^{*}\right|^{2}}$ where $E_{B}^{*} \rightarrow E_{\text {beam }}^{*} \quad \vec{p}_{B}^{*} \simeq 300 \mathrm{MeV} /$ c
- Beam energy spread determines resolution $\sim 3 \mathrm{MeV}$.
- Energy difference $\Delta E=E_{B}^{*}-E_{\text {beam }}^{*}$
- Resolution $10-50 \mathrm{MeV}$, depending on final-state neutrals.
- K_{L} energy cannot be fully reconstructed; B candidate is constrained at B mass and use $\Delta \mathrm{E}$ as the discriminator.
- Continuum u,d,s,c backgrounds are suppressed using angular distributions and event shape variables
- Flavor tagging is inclusive:

- For each fully reconstructed $B_{C P}$, search for features from the other B such as high momentum leptons, kaons, soft-pion from D^{*}, etc. These features are fed into a neural net to determine the B flavor.

Event samples

7796 events, purity $87 \%-96 \%$ ($5.27-5.29 \mathrm{GeV}$)

5813 events, purity 56% ($<10 \mathrm{MeV}$) (depending on mode)

Signal model

- PDF for the 8 signal processes

$$
\begin{aligned}
& g_{\alpha, \beta}^{ \pm}(\tau) \propto e^{-\Gamma|\tau|}\left\{1+S_{\alpha, \beta}^{ \pm} \sin \left(\Delta m_{d} \tau\right)+C_{\alpha, \beta}^{ \pm} \cos \left(\Delta m_{d} \tau\right)\right\} \\
& \quad \alpha \in\left\{B^{0}, \bar{B}^{0}\right\} ; \quad \beta \in\left\{K_{s}^{0}, K_{L}^{0}\right\} \quad \tau= \pm \Delta t>0
\end{aligned}
$$

Mistag dilutes the S, C parameters by a factor of (1-2w)

- Fit model is the signal PDF combined with a step function H in $\Delta \mathrm{t}$ and convolved with a resolution function
 $\mathcal{H}_{\alpha, \beta}(\Delta t) \propto g_{\alpha, \beta}^{+}\left(\Delta t_{\text {true }}\right) H\left(\Delta t_{\text {true }}\right) \otimes \mathcal{R}\left(\delta t ; \sigma_{\Delta t}\right)+$

$$
g_{\alpha, \beta}^{-}\left(-\Delta t_{\text {true }}\right) H\left(-\Delta t_{\text {true }}\right) \otimes \mathcal{R}\left(\delta t ; \sigma_{\Delta t}\right)
$$

- The signal model has 8 different sets of (S, C) parameters

$$
(\Delta t>0, \Delta t<0) \times\left(B^{0}, \bar{B}^{0}\right) \times\left(J / \psi K_{S}^{0}, J / \psi K_{L}^{0}\right)
$$

- The canonical $C P$ violation study* has one set of (S, C) parameters.

$$
\text { *e.g., PRD } 79 \text { (2009) } 072009
$$

Fit parameters $\Delta \mathrm{S}^{ \pm}$and $\Delta \mathrm{C}^{ \pm}$

Results

			expectation from canonical $C P$
	Parameter	Result	
	$S_{\ell}^{+}{ }^{+}, c \bar{c} K_{S}^{0}$	$0.55 \pm 0.08 \pm 0.06$	$+\sin 2 \beta$
Reference parameters	$S_{\ell+X, c \bar{c} K_{S}^{0}}^{-}$	$-0.66 \pm 0.06 \pm 0.04$	$-\sin 2 \beta$
	$C_{\ell+X, c \bar{c} K_{S}^{0}}^{+}$	$0.11 \pm 0.06 \pm 0.05$	o
	$C_{\ell+X, c \bar{c} K_{S}^{0}}^{-}$	$-0.05 \pm 0.06 \pm 0.03$	0
T		$-1.37 \pm 0.14 \pm 0.06$	$-2 \sin 2 \beta$
	$\Delta S_{\mathrm{T}}^{-}=S_{\ell^{-} X, J / \psi K_{L}^{0}}^{+}-S_{\ell^{+} X, c \bar{c} K_{S}^{0}}^{-}$	$1.17 \pm 0.18 \pm 0.11$	$+2 \sin 2 \beta$
	$\Delta C_{\mathrm{T}}^{+}=C_{\ell^{-} X, J / \psi K_{L}^{0}}^{-}-C_{\ell+X, c \bar{c} K_{S}^{0}}^{+}$	$0.10 \pm 0.16 \pm 0.08$	0
	$\Delta C_{\mathrm{T}}^{-}=C_{\ell^{-} X, J / \psi K_{L}^{0}}^{+}-C_{\ell^{+} X, c \bar{c} K_{S}^{0}}^{-}$	$0.04 \pm 0.16 \pm 0.08$	0
CP	$\Delta S_{\mathrm{CP}}^{+}=S_{\ell^{-} X, c \bar{c} K_{S}^{0}}^{+}-S_{\ell^{+} X, c \bar{c} K_{S}^{0}}^{+}$	$-1.30 \pm 0.10 \pm 0.07$	$-2 \sin 2 \beta$
	$\Delta S_{\mathrm{CP}}^{-}=S_{\ell^{-} X, c \bar{c} K_{S}^{0}}^{-}-S_{\ell^{+} X, c \bar{c} K_{S}^{0}}^{-}$	$1.33 \pm 0.12 \pm 0.06$	$+2 \sin 2 \beta$
	$\Delta C_{\mathrm{CP}}^{+}=C_{\ell^{-} X, c \bar{c} K_{S}^{0}}^{+}-C_{\ell^{+} X, c \bar{c} K_{S}^{0}}^{+}$	$0.07 \pm 0.09 \pm 0.03$	O
	$\Delta C_{\mathrm{CP}}^{-}=C_{\ell^{-} X, c \bar{c} K_{S}^{0}}^{-}-C_{\ell^{+} X, c \bar{c} K_{S}^{0}}^{-}$	$0.08 \pm 0.10 \pm 0.04$	O
CPT	$\Delta S_{\mathrm{CPT}}^{+}=S_{\ell^{+} X, J / \psi K_{L}^{0}}^{-}-S_{\ell^{+} X, c \bar{c} K_{S}^{0}}^{+}$	$0.16 \pm 0.20 \pm 0.09$	o
	$\Delta S_{\text {CPT }}^{-}=S_{\ell^{+} X, J / \psi K_{L}^{0}}^{+}-S_{\ell^{+} X, c \bar{c} K_{S}^{0}}^{-}$	$-0.03 \pm 0.13 \pm 0.06$	0
	$\Delta C_{\mathrm{CPT}}^{+}=C_{\ell^{+} X, J / \psi K_{L}^{0}}^{-}-C_{\ell^{+} X, c \bar{c} K_{S}^{0}}^{+}$	$0.15 \pm 0.17 \pm 0.07$	o
	$\Delta C_{\mathrm{CPT}}^{-}=C_{\ell+X, J / \psi K_{L}^{0}}^{+}-C_{\ell^{+} X, c \bar{c} K_{S}^{0}}^{-}$	$0.03 \pm 0.14 \pm 0.08$	O

Independent T asymmetries

Points: data; red (blue) curves: projections of fits with (without) T violation

Interpretation of T violation result

$C P$ and $C P T$ results

$\Delta S_{C P}^{+}$	$=$	$-1.30 \pm 0.10 \pm 0.07$
$\Delta S_{C P}^{-}$	$=$	$1.33 \pm 0.12 \pm 0.06$
$\Delta C_{C P}^{+}$	$=$	$0.07 \pm 0.10 \pm 0.03$
$\Delta C_{C P}^{-}$	$=$	$0.08 \pm 0.09 \pm 0.04$

$C P T$ violating parameters

$C P$ violating parameters

$\Delta S_{C P T}^{+}$	$=$	$0.16 \pm 0.20 \pm 0.09$
$\Delta S_{C P T}^{-}$	$=$	$-0.03 \pm 0.13 \pm 0.06$
$\Delta C_{C P T}^{+}$	$=$	$0.15 \pm 0.17 \pm 0.07$
$\Delta C_{C P T}^{-}$	$=$	$0.03 \pm 0.14 \pm 0.08$

$(0,0)=$ no violation

Conclusion

- BABAR has measured T-violating parameters in neutral B meson decays by comparing conjugate processes that can only be achieved by T reversal, not $C P$.
- The first time this kind of process is utilized to demonstrate T violation.
- This novel approach does not need $C P T$ invariance to link T with $C P$.
- T violation is observed at $>10 \sigma$ level.
- $C P$ and $C P T$ violations are also tested.
- Result is consistent with measurements of $C P$ violation assuming CPT invariance.

Back up

Systematics (for $\Delta \mathbf{S}_{T^{ \pm}}$)

Systematic source	$\Delta \mathrm{S}_{\mathrm{T}}{ }^{+}$	$\Delta \mathrm{S}_{\mathrm{T}^{-}}$
misID flavour	0.019	0.019
Δt resolution function	0.02	0.05
Outlier's scale factor	0.012	-0.013
$\mathrm{~m}_{\text {ES }}$ parameters	0.012	0.0018
ΔE parameters	0.017	0.017
K_{L} systematics	0.03	0.03
Differences between $B_{C P}$ and $B_{\text {flav }}$	0.02	0.02
Background effects	0.03	0.04
Uncertainty on fit bias from $M C$	0.010	0.08
Detector and vertexing effects.	0.011	0.04
$\Delta \Gamma \neq 0$ effects	0.004	0.003
External physics parameters	0.005	0.006
Normalization effects	0.012	0.009
Total Systematics	0.06	0.11

Significance of T violation

- Standard fit yields a likelihood value of the fit to S , C using the 8 independent samples.
- Repeat the fit, applying constraints to the parameters for T-conjugate processes
- Difference in likelihood values yields the significance of T violation.

> T-inv. constraints

$$
\Delta S_{\mathrm{T}_{+}}^{ \pm}=\Delta C_{\mathrm{T}^{\prime}}^{ \pm}=0
$$

$$
\Delta S_{\mathrm{CP}}^{ \pm}=\Delta S_{\mathrm{CPT}}^{ \pm}
$$

$$
\Delta C_{\mathrm{CP}}^{ \pm}=\Delta C_{\mathrm{CPT}}^{ \pm}
$$

$$
\begin{aligned}
\Delta \chi^{2} & =-2\left(\ln L_{\mathrm{NoTRV}}-\ln L\right) \\
\Delta \nu & =8 \text { degrees of freedom }
\end{aligned}
$$

- CP and CPT significance can be determined the same way with proper constraints.
- Systematic uncertainties are included by calculating $2 \Delta \operatorname{lnL}\left(=\mathrm{m}_{\mathrm{j}} \mathrm{j}\right)$ varying each parameter by $\pm 1 \sigma_{\text {syst. }}$ and reduce the overall statistical $-2 \Delta \operatorname{lnL}$ by $1+\max \left(\mathrm{m}^{2}{ }_{\mathrm{j}}\right)$.

	$-2 \Delta \ln L$	Signif.
T	226	$>10 \sigma$
$C P$	307	$>10 \sigma$
$C P T$	5	0.33σ

