New Light Species and the CMB

Chris Brust – 5/1/13

Work done with Matthew T. Walters and David E. Kaplan

Based on arXiv:1303.5379

Johns Hopkins University and University of Maryland, College Park

Punchlines

- BSM physics with m << eV species can be probed by CMB
- Obtaining distribution functions requires numerical solution
- Can constrain couplings in wide range of natural, minimal effective theories with recent results from Planck

http://www.esa.int/For_Media/Photos/Highlights/Planck

Effects of Light (m << eV) Species

- Light species contribute to H, affecting CMB
- Effects parameterized by one number g_{*} proportional to energy density

 SM contributions to N_{eff} from photons and neutrinos:

$$g_* = 3.38 = 2 + 2 \cdot \frac{7}{8} N_{eff} \left(\frac{4}{11}\right)^{\frac{4}{3}} \qquad N_{eff} = 3.04$$

Measurements of N_{eff}

• SM prediction:

 $g_* = 3.38$ $N_{eff} = 3.046$

• WMAP nine-year, SPT, ACT:

 $g_* = 3.69 \pm 0.16$ $N_{eff} = 3.71 \pm 0.35$

• Planck:

$$g_* = 3.50 \pm 0.12$$
 $N_{eff} = 3.30 \pm 0.27$

Friedmann Equations

 Einstein equations relate expansion rate to energy density and pressure:

$$H^2 = \frac{8\pi G}{3}\rho$$

$$\frac{\partial \rho}{\partial t} = -3H(\rho + P)$$

Boltzmann Equations

$$E\frac{\partial f}{\partial t} - Hp^2\frac{\partial f}{\partial E} = C[f]$$

$$C[f_X] = \frac{1}{2} \sum_{X, i \to j, k} \int \left(\prod_{s=i, j, k} g_s \frac{d^3 p_s}{(2\pi)^3 2E_s} \right) (2\pi)^4 \delta^4 (p_{in} - p_{out}) S \left| \mathcal{M} \right|^2 \Omega$$

 $\Omega(f_X, f_i, f_j, f_k) = f_j f_k (1 \pm f_X) (1 \pm f_i) - f_X f_i (1 \pm f_j) (1 \pm f_k)$

Solve coupled Boltzmann and Friedmann equations

Precision Theory

 Wrote software to numerically solve coupled Boltzmann + Friedmann equations on a momentum x time lattice

- Solves to percent-level accuracy
- Ignores loop corrections, 2 to 3 processes, finite temperature QFT effects (all sub-percent corrections)

Precision Theory

- Cannot compute during QCD phase transition; loop corrections large, etc.
- For all models we considered:
 - Compute Feynman diagrams
 - Perform angular phase space integrations
 - Run code to solve Boltzmann equations
 - Extract Δg_* from distribution functions

Models with New Light Species

• We demand that model is:

- Natural in t'Hooft sense: $\left|\frac{\delta\lambda}{\lambda}\right| < 1$
- Minimal: as little new physics as possible
- Contains species with m < eV

Compute ∆g_{*} for universality classes of models

Summary of Our Models

Goldstone boson:

$$\mathcal{L} \supset -\frac{\partial_{\mu}\phi}{\Lambda_{f}} \bar{\Psi_{f}} \gamma^{\mu} \gamma^{5} \Psi_{f} - \frac{e^{2}}{32\pi^{2}\Lambda_{\gamma}} \phi F^{\mu\nu} \tilde{F}_{\mu\nu} + \pi \text{ couplings}$$

Four-fermion interactions:

 $\frac{1}{\Lambda^2} \bar{\mathbf{X}} \gamma^{\mu} \mathbf{X} \bar{\Psi} \gamma_{\mu} \Psi \text{ or scalar, pseudoscalar, axial couplings}$

Summary of Our Models

Light sterile neutrinos:

$$\mathcal{L} \supset -m_{ij}\nu_{Ri}^c\nu_{Lj} - \frac{1}{2}M_{ij}\nu_{Ri}^c\nu_{Rj}^c + h.c.$$

• U(1)' with kinetic mixing with hypercharge:

$$\mathcal{L} \supset -\frac{\epsilon}{2} A^{\prime\mu\nu} B_{\mu\nu}$$

• U(1)' with dipole couplings to SM fermion:

$$\mathcal{L} \supset -\frac{1}{\Lambda} A'_{\mu\nu} \psi^c_R \sigma^{\mu\nu} \psi_L + h.c.$$

Four-fermion Vector Example

• $\Lambda = 1.4$ TeV: Decouples during muon annihilation

 $f(p,t) = \frac{1}{\rho^{v(p,t)} + 1} = \frac{1}{\rho^{p/T_{eff}(p,t)} + 1}$ Red: fully coupled **** 0.9 Blue: our code ad ba 0.1 Green: fully decoupled 0.6 10^{-4} 10-5 0.001 0.01 0.1 Momentum (GeV)

Four-Fermion Vector Results

Weyl fermion

Four-Fermion Vector Results

Dirac fermion

Conclusions

- Wrote code to solve Boltzmann equation for nonthermal distribution functions
- Constructed map from parameter space to N_{eff}
- New constraints on parameter space from Planck results
- Potential discovery of new light species with future experimental results

Goldstone Boson Results

Sterile Neutrino Results

- LSND and MiniBooNE anomalies:
 - 3+2 framework
 - Best-fit point
- Mass basis: induced gauge couplings of new neutrino states
- Normal hierarchy: m = 0.7 and 0.9 eV Inverted hierarchy: m = 0.8 and 1.2 eV

Sterile Neutrino Results

- Result: new states decouple just after muon annihilation with nonthermal distributions
- Contribute to measurements of $\boldsymbol{\Omega}_{_{DM}}$ today
- Mass effects subtle; requires further study

U(1)' Kinetic Mixing Results

- No fermions charged under U(1)':
 - Can always redefine away kinetic mixing term
 - No contribution to g_{*}
- Dirac fermion x charged under U(1)':

- Redefinition introduces couplings of χ to photons proportional to ϵ

U(1)' Kinetic Mixing Results

- $m_{\chi} \lesssim 10 \text{ MeV}$: star/supernova cooling prevents hidden sector from ever coupling to SM
- $m_{\chi} \gtrsim 150 \,\mathrm{MeV}$: hidden sector decouples before/during QCD phase transition
- Otherwise, answer depends on initial hidden sector temperature

U(1)' Kinetic Mixing Results

U(1)' Dipole Results

 Flavor-blind parameter space which decouples after QCD phase transition:

- Excluded by supernova/star cooling

 Muon-only couplings constrained by Planck at 95% CL:

Summary of Results

Model	Operator	Results
Goldstone bosons	$rac{1}{\Lambda}\partial_\mu\phiar{\Psi}\gamma^\mu\gamma^5\Psi$	Flavor-blind: Already excluded
		Muon-only: $\Delta g_* \leq 0.26$
Four-fermion V	$rac{1}{\Lambda^2}\chi^\daggerar{\sigma}^\mu\chiar{\Psi}\gamma_\mu\Psi$	Weyl: $\Lambda > 1$ TeV
(S, P, A same to	$rac{1}{\Lambda^2}ar{\mathbf{X}}\gamma^\mu\mathbf{X}ar{\Psi}\gamma_\mu\Psi$	Dirac: $\Lambda > 5$ TeV
5%; see text)		
Sterile Neutrinos	Electroweak Interactions	Inconclusive; mass-dependent
U(1)'	$\epsilon e ar{\chi} A \chi$	$\epsilon < 10^{-8}$ for 10 MeV $\leq m_{\chi} \leq 150$ MeV
		$m_{\chi} > 150$ MeV: Decouples during/before
		QCD phase transition
A'-dipole	$\frac{1}{\Lambda}A'_{\mu u}\bar{\Psi}\sigma^{\mu u}\Psi$	Flavor-blind: Already excluded
		Muon-only: $\Lambda > 10^3 \text{ TeV}$