$B \to \tau \nu_{\tau}, B \to \overline{D}^{(*)} \tau \nu_{\tau},$ and Charm *CP* at *BABAR*

Presented at Brookhaven Forum 2013, May 1-3

Daniel Chao

OUTLINE

- Motivation for $B \to \overline{D}{}^{(*)} \tau \nu$ and $B \to \tau \nu$.
- $B \to \overline{D}^{(*)} \tau \nu$ (arxiv: 1303.0571)
 - Analysis Overview and Results.
 - Interpretation.
- B
 ightarrow au
 u. (arxiv: 1207.0698)
 - Analysis Overview and Results.
- Charm CP :
 - $D^0 \overline{D}^0$ mixing and *CP* violation. (arxiv: 1209.3896)
 - Direct *CP* violation search in $D^{\pm} \to K^+ K^- \pi^{\pm}$. (arxiv: 1212.1856)
 - *CP* violation in $D^{\pm} \rightarrow K^0_S K^{\pm}$, $D^{\pm}_s \rightarrow K^0_S K^{\pm}$, and $D^{\pm}_s \rightarrow K^0_S \pi^{\pm}$ (arxiv: 1212.3003)

Motivation for Measuring $B \to \tau \nu$ and $B \to \overline{D}^{(*)} \tau \nu$

- Third generation leptons couple more strongly to the electroweak symmetry breaking sector. Their decays, therefore, are suitable to probe physics beyond the Standard Model (SM).
- One popular scenario for New Physics is the two Higgs doublet model (2HDM). It enhances the decay rates of $B \to \tau \nu$ and $B \to \overline{D}^{(*)} \tau \nu$ through the contribution of a charged Higgs boson.

Measurement Overview for $B \to \overline{D}^{(*)} \tau \nu$

• We measure ratios of branching fractions:

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(B \to \overline{D}^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \to \overline{D}^{(*)} \ell \nu_{\ell})}$$

• Reduces theoretical uncertainties.

- Independent of $|V_{cb}|$.
- Mostly independent of form factor parameterization.
- Reduces experimental uncertainties. In this analysis, both decay modes in the ratio are reconstructed in the same final states.
 - Cancels multiplicative uncertainties; e.g., lepton PID, detection and reconstruction efficiencies.

EVENT RECONSTRUCTION AND SELECTION

- For each event, reconstruct $B_{tag}D^{(*)}\ell$.
- Signal efficiency is 3 times more than previous *BABAR* analysis. (arxiv: 0709.1698)
- Due to the presence of three neutrinos, our ability to fully reconstruct the rest of the event is critical.

FITTING YIELDS AND EXTRACTING RESULTS

• Define signal $(\overline{B} \to D^{(*)}\tau^-\overline{\nu}_{\tau})$ and normalization $(\overline{B} \to D^{(*)}\ell^-\overline{\nu}_{\ell})$ events.

- The signal and normalization yields are determined in an unbinned maximum-likelihood fit to the 2D distribution in $m_{miss}^2 \operatorname{vs} |\boldsymbol{p}_\ell^*|$.
- Take the quotient of signal and normalization yields and scale with their efficiencies determined in MC to get the desired ratios.

$$\mathcal{R}(D^{(*)}) = \frac{N_{\text{sig}}}{N_{\text{norm}}} \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}}$$

RESULTS

COMPARISON WITH STANDARD MODEL

• Our results compared to SM predictions:

 $\begin{aligned} \mathcal{R}(D)_{\text{exp}} &= 0.440 \pm 0.072 \quad \mathcal{R}(D^*)_{\text{exp}} = 0.332 \pm 0.030 \\ \mathcal{R}(D)_{\text{SM}} &= 0.297 \pm 0.017 \quad \mathcal{R}(D^*)_{\text{SM}} = 0.252 \pm 0.003 \\ \end{aligned}$ (SM predictions see arxiv: 1203.2654)

• Combining these ratio measurements and taking correlations into account, we exclude the possibility that SM predictions agrees with both at 3.4σ .

COMPARISON WITH TYPE-II 2HDM

- To determine whether type-II 2HDM is consistent with the observed excess, we plot our results as a function of $\tan\beta/m_{H^+}$.
- Together with $B \to X_s \gamma$ measurements, we exclude the type-II 2HDM at 99.8% confidence level in the full $\tan\beta/m_{H^+}$ parameter space.

Measurement Overview: $B \rightarrow \tau \nu$

- Limited precision on $|V_{ub}|$ is the main source of uncertainty. The ratio trick does not work experimentally as the lighter leptons are helicity suppressed.
- SM predicts the branching fraction differently depending on which experimentally determined $|V_{ub}|$ is used:
 - Using $|V_{ub}|$ measured from exclusive B decays: $\mathcal{B}_{SM}(B^+ \rightarrow \tau^+ \nu) = (0.62 \pm 0.12) \times 10^{-4}$
 - Using $|V_{ub}|$ measured from inclusive *B* decays: $\mathcal{B}_{SM}(B^+ \to \tau^+ \nu) = (1.18 \pm 0.16) \times 10^{-4}$

Results for $B \to \tau \nu$

- Excludes no signal hypothesis at 3.8σ .
- Exceeds SM predictions by 2.4σ and 1.6σ for using exclusive and inclusive values of $|V_{ub}|$ respectively.

11

$D^0 - \overline{D}^0$ mixing and CP Violation

- One manifestation of $D^0 \overline{D}{}^0$ mixing is differing D^0 decay time distributions to different CP eigenstates.
- From the decay widths, we compute the mixing and *CP* violation (*CPV*) parameters:

$$y_{CP} = \frac{\Gamma^+ + \overline{\Gamma}^+}{2\Gamma} - 1, \quad \Delta Y = \frac{\Gamma^+ - \overline{\Gamma}^+}{2\Gamma},$$

they are zero for no mixing and no *CPV* hypotheses respectively.

$D^0 - \overline{D}^0$ mixing and CP Violation

• We measure the effective D^0 lifetimes in three modes:

- $D^0 \to K^{\mp} \pi^{\pm}$: This final state is *CP* mixed. We assume its decay width is described by the average D^0 width Γ .
- $D^0(\overline{D}{}^0) \to \pi^- \pi^+$: This final state is *CP* even, and its lifetime is Γ^+ ($\overline{\Gamma}{}^+$).
- $D^0(\overline{D}^0) \to K^-K^+$: This is also *CP* even. We assume it has the same decay width as the mode above.

• The results are:

 $y_{CP} = [0.72 \pm 0.18(\text{stat}) \pm 0.12(\text{syst})]\%$ $\Delta Y = [0.09 \pm 0.26(\text{stat}) \pm 0.06(\text{syst})]\%$

This excludes the no mixing hypothesis at 3.3σ . We find no evidence for *CPV* in mixing.

DIRECT *CP* VIOLATION IN $D^{\pm} \to K^+ K^- \pi^{\pm}$

- We reconstruct the 3-body decay D[±] → K⁺K⁻π[±] and perform integrated *CP* asymmetry measurements as well as Dalitz plot analyses to search for direct *CPV*.
- Integrated *CP* Asymmetry: Fitting for the yields in $D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$, we get:

 $A_{CP} = (0.37 \pm 0.30 \pm 0.15)\%$

• We also compute asymmetries in different regions of the Dalitz plot:

Dalitz plot region	$A_{CP}[\%]$
(A) Below $\bar{K}^*(892)^0$	$-0.7 \pm 1.6 \pm 1.7$
(B) $\bar{K}^*(892)^0$	$-0.3 \pm 0.4 \pm 0.2$
(C) $\phi(1020)$	$-0.3 \pm 0.3 \pm 0.5$
(D) Above $\bar{K}^*(892)^0$	and $\phi(1020) 1.1 \pm 0.5 \pm 0.3$

No evidence of direct *CPV*.

$$\begin{array}{ccc} CP \text{ ASYMMETRY IN } D^{\pm} & \to & K^0_s K^{\pm}, \\ D^{\pm}_s & \to & K^0_s \pi^{\pm}, \text{ AND } D^{\pm}_s & \to & K^0_s K^{\pm} \end{array}$$

• The *CP* asymmetry

$$A_{CP} = \frac{\Gamma(D_{(s)}^+ \to f) - \Gamma(D_{(s)}^- \to \overline{f})}{\Gamma(D_{(s)}^+ \to f) + \Gamma(D_{(s)}^- \to \overline{f})}$$

is measured in modes $D^{\pm} \rightarrow K^0_{\scriptscriptstyle S} K^{\pm}, \ D^{\pm}_s \rightarrow K^0_{\scriptscriptstyle S} K^{\pm}, \text{ and } D^{\pm}_s \rightarrow K^0_{\scriptscriptstyle S} \pi^{\pm}.$

• After accounting for detector asymmetries and the forward backward asymmetry:

Decay Mode	A_{CP} final value
$D^{\pm} \to K^0_{\scriptscriptstyle S} K^{\pm}$	$(0.46 \pm 0.36 \pm 0.25)\%$
$D_s^{\pm} \to K_s^0 K^{\pm}$	$(0.28 \pm 0.23 \pm 0.24)\%$
$D_s^{\pm} \to K_s^0 \pi^{\pm}$	$(0.3 \pm 2.0 \pm 0.3)\%$

These results are all consistent with SM predictions.

SUMMARY

$\circ B \to \overline{D}^{(*)} \tau \nu :$

- Disagrees with SM predictions at 3.4σ .
- Excludes Type-II 2HDM at 99.8% confidence level.
- $\bullet B \to \tau \nu :$
 - Branching fractions in excess of SM predictions.
- Charm *CP* :
 - $D^0 \overline{D}^0$ mixing:
 - ${\scriptstyle o}$ Observed mixing at 3.3σ .
 - No evidence of *CPV* in mixing.
 - No evidence of direct *CPV* in $D^{\pm} \to K^+ K^- \pi^{\pm}$.
 - No evidence of *CPV* in

 $D^{\pm} \rightarrow K^0_{_S}K^{\pm}, \ D^{\pm}_{_S} \rightarrow K^0_{_S}K^{\pm}, \ \text{and} \ D^{\pm}_{_S} \rightarrow K^0_{_S}\pi^{\pm}$.

BACKUPS

COMPARISON WITH TYPE-III 2HDM

- In the type-III 2HDM, a right handed current is included. The relative contributions of the left and right handed currents are parameterized with S_L and S_R .
- In this model, the measured ratios take the form

$$\mathcal{R}(D) = \mathcal{R}(D)_{\rm SM} + A'_D \operatorname{Re}(S_R + S_L) + B'_D |S_R + S_L|^2,$$

$$\mathcal{R}(D^*) = \mathcal{R}(D^*)_{\rm SM} + A'_{D^*} \operatorname{Re}(S_R - S_L) + B'_{D^*} |S_R - S_L|^2$$

• For real values of S_L and S_R , four regions are favored:

18