$B \rightarrow \tau v / D \tau v$ B DECAYS TO τ LEPTONS

Toru lijima
Kobayashi-Maskawa Institute
Nagoya University

May 2, 2013
Brookhaven Forum 2013

Kobayashi-Maskawa Institute
for the Origin of Particles and the Universe

Talk Outline

- Introduction
- Purely leptonic decay $B \rightarrow \tau v$
- Semileptonic decay $B \rightarrow D^{\left({ }^{*}\right)} \tau v$
- Future Prospect
- Summary

BNL-E813/836
Search for "H particle" My PhD experiment

Special thanks to Dr. Y. Horii (cf. his talk at Beauty2013)

$$
B \rightarrow \tau \nu / B \rightarrow D^{(*)} \tau \nu
$$

Sensitive for NP $\left(H^{+}, \ldots\right)$
Key flavor physics observables in the LHC era!

$B^{-} \rightarrow \tau^{-} v$ in SM

- Proceed via W-exchange, helicity suppressed.

$$
\begin{aligned}
& \mathcal{B}^{-} \quad \begin{array}{lll}
B r(B \rightarrow e v) & 10^{-11} \\
B r(B \rightarrow \mu v) & 10^{-7} \\
B r(B \rightarrow \tau v) & 10^{-4}
\end{array} \\
& \mathcal{B}\left(B^{-} \rightarrow \ell^{-} \bar{\nu}\right)=\frac{G_{F}^{2} m_{B} m_{\ell}^{2}}{8 \pi}\left(1-\frac{m_{\ell}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B}
\end{aligned}
$$

- Parameters
- B decay constant: $f_{B}=191 \pm 9 \mathrm{MeV}$
- CKM matrix:

$$
\begin{aligned}
& \text { : } \quad\left|V_{u b}\right|=(4.15 \pm 0.49) \times 10^{-3} \\
& B r_{S M}(\tau v)=(1.20 \pm 0.25) \times 10^{-4}
\end{aligned}
$$

Can be obtained also from a global CKM fit

HPQCD, PRD86
$b \rightarrow u l v$, PRD86

Charged Higgs Effect in $B \rightarrow \tau v$

- Charged Higgs exchange interferes with the helicity suppressed W-exchange.

- Example of Br modification

$$
B r=B r_{S M} \times r_{H} \quad r_{H}=\left|1-g_{S}\right|^{2}
$$

Type II 2HDM, W. S. Hou, PRD 48, 2342 (1993),

$$
r_{H}=\left(1-\frac{m_{B}^{2}}{m_{H}^{2}} \tan ^{2} \beta\right)^{2}
$$

Analysis for $B \rightarrow \tau v$

Status for $B \rightarrow \tau \nu$ before ICHEP 2012

$B \rightarrow \tau \nu$ by Semileptonic Tag Belle BaBar

- PRD 82, $071101(\mathrm{R})$ (2010).
- Use 657 M BB.

- PRD 81, 051101(R) (2010).
- Use 459 M BB.
- $\mathrm{B}=[1.7 \pm 0.8 \pm 0.2] \times 10^{-4}$.

Belle at ICHEP2012

- Use 772M BB (full) data (w.r.t. Belle2006)
- Improved tracking eff. by reprocessing data
- Improved hadronic tags
$\times 2.2$ (NueroBayes algorithm)
- Improved signal selection efficiency (in trade of S / N) $\times 1.8$
- Newly added K K veto
- Better understanding of peaking background
- 2D fit in ($\left.E_{E C L}, M_{\text {miss }}{ }^{2}\right)$ for signal extraction

$$
\operatorname{Br}(B \rightarrow \tau v)=\left[0.72_{-0.25}^{+0.27} \pm 0.11\right] \times 10^{-4}
$$

Published in PRL110, 131801 (2013)!

$B \rightarrow \tau \nu$ by Hadronic Tag at Belle, Mode Independence

As a check, we fit by floating the yields for different t modes.

Take $\mathrm{T} \rightarrow \mathrm{evv}, \mu \mathrm{vv}$, $\rho \mathrm{v}$ cross-feeds in $\mathrm{T} \rightarrow \pi \mathrm{v}$ candidates as signal.

Mode	Number of signal	Efficiency
$e^{-} \bar{\nu}_{e} \nu_{\tau}$	$15.5_{-9.4}^{+11.2}$	2.98×10^{-4}
$\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}$	$25.6_{-1.3}^{+15.1}$	3.12×10^{-4}
$\pi^{-} \nu_{\tau}$	$7.8_{-7.9}^{+9.5}$	1.76×10^{-4}
$\rho^{-} \nu_{\tau}$	$13.6_{-16.1}^{+18.7}$	3.37×10^{-4}

Consistent results.

Rare unobserved BG decays (e.g. $B \rightarrow \mu v \gamma$) would show up in individual signal modes.

BaBar at ICHEP2012

- Use 468M BB (full) data sample
- Use four τ decay channels - evv, $\mu v v, \pi v, \rho v$
- Expanded set of hadronic tag modes
- including $B \rightarrow J / \psi X$
- ~x 2 w.r.t. BaBar2008

$$
\operatorname{Br}(B \rightarrow \tau v)=\left[1.83_{-0.49}^{+0.53} \pm 0.24\right] \times 10^{-4}
$$

Status for B $\rightarrow \tau$ v after ICHEP 2012

Belle combined: $\mathcal{B}=(0.96 \pm 0.26) \times 10^{-4} \quad$ BaBar combined: $\mathcal{B}=(1.79 \pm 0.48) \times 10^{-4}$
A naive world average: $\mathcal{B}=(1.15 \pm 0.23) \times 10^{-4}$

Constraint on Charged Higgs from $B \rightarrow \tau \nu$

- Assume Type-II 2HDM.

$$
\begin{aligned}
\mathcal{B}(B \rightarrow \tau \nu) & =\mathcal{B}(B \rightarrow \tau \nu)_{\mathrm{SM}} \times r_{H} \\
r_{H} & =\left(1-\frac{m_{B}^{2}}{m_{H}^{2}} \tan ^{2} \beta\right)^{2}
\end{aligned}
$$

- Use
- $\mathrm{B}(\mathrm{B} \rightarrow \tau \nu)=(1.15 \pm 0.23) \times 10^{-4}$
- $\mathrm{B}(\mathrm{B} \rightarrow \tau \nu)_{\mathrm{sm}}=(1.11 \pm 0.28) \times 10^{-\mu}$ where $B(B \rightarrow \tau \nu)$ sm is obtained from
- $f_{B}=(191 \pm 9) \mathrm{MeV}(H P Q C D, ~ P R D 86)$
- $\mid \mathrm{Vab}_{\mathrm{ub}}=(4.15 \pm 0.49) \times 10^{-3}$ (PDG, PRD86)

Personal figure by Y. Horii.

Stringent constraint on $\tan \beta$ and m н obtained.

Note: constraint strongly depends on f_{B} and $\left|V_{u b}\right|$.

$B \rightarrow D \tau v$

- $B \rightarrow D \tau v$ is another process sensitive to the charged Higgs, and complementary to $B \rightarrow \tau \nu$.
- Relatively large $\mathrm{Br} \sim 0.8 \%$
- Different theory systematics:
- free from $V_{u b}$ and f_{B} ambiguity.
- depends on the $B \rightarrow D$ form factors, which can be deduced from D Iv data.

- $\left|V_{c b}\right|$ and a part of QCD effects canceled by taking ratios.

$$
\mathcal{R}(D)=\frac{\mathcal{B}\left(\bar{B} \rightarrow D \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D \ell^{-} \bar{\nu}_{\ell}\right)}, \quad \mathcal{R}\left(D^{*}\right)=\frac{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell}\right)}
$$

$B \rightarrow D \mid v$ decay is measured precisely; $\operatorname{Br}\left(B^{-} \rightarrow D^{0} \mid v\right)=(2.26 \pm 0.11) \%$

- Possible observables additional to the ratios:
- τ polarization, D^{*} polarization, q^{2} distribution, ...

$B \rightarrow D^{(*)} \tau \nu$ from BaBar

- PRL 109, 101802 (2012).
- arXiv:1303.0571, submitted to PRD.
- Use 471 M BB (full data).
- Improved hadronic tag by more modes.
- Boosted decision tree for event selection.

$$
\begin{gathered}
R(D)=B(D \tau v) / B(D \mid \nu)= \\
0.440 \pm 0.058 \pm 0.042 \\
R\left(D^{*}\right)=B\left(D^{*} \tau \nu\right) / \mathrm{B}\left(\mathrm{D}^{*} \mid \nu\right)= \\
0.332 \pm 0.024 \pm 0.018
\end{gathered}
$$

- Systematic uncertainties from D** BG, BG PDFs, BG yields, etc.

$\mathrm{B} \rightarrow \mathrm{D}^{(*)} \tau \nu$ from BaBar and SM

$$
\begin{array}{rlrl}
\mathcal{R}(D)_{\exp } & =0.440 \pm 0.072 & \mathcal{R}\left(D^{*}\right)_{\exp }=0.332 \pm 0.030 \\
& \downarrow_{2.0 \sigma} & & \downarrow^{2.7 \sigma} \\
\mathcal{R}(D)_{\mathrm{SM}} & =0.297 \pm 0.017 & \mathcal{R}\left(D^{*}\right)_{\mathrm{SM}}=0.252 \pm 0.003
\end{array}
$$

SM expectations in S. Fajfer, J. Kamenik, I. Nisandzic, PRD 85, 094025 (2012).

The possibility that the measured $R(D)$ and $R\left(D^{*}\right)$ both agree with the SM predictions is excluded at the 3.4σ level.
(σ for 1-D Gaussian function)

$B \rightarrow D^{(*)} \tau \nu$ from BaBar and Type-II 2HDM

Blue: this result, red: Type-II 2HDM.

(The values indicated for $\tan \beta / \mathrm{m}_{\mathrm{H}}$.)
Exp. $R\left(D^{(*)}\right)$ dependency mainly from $\mathrm{m}_{\text {miss }}{ }^{2}$ dependency (reflection of q^{2} dependence).

The combination of $R(D)$ and $R\left(D^{*}\right)$ excludes the Type-II 2HDM at 99.8\% C.L. for any value of $\tan \beta / \mathrm{m}_{\mathrm{H}}$.

Note: Type III and q² spectra in arXiv:1303.0571.

$B \rightarrow D^{(*)} \tau \nu$ from Belle

- Inclusive tags
- $\mathrm{B}_{\mathrm{tag}}$'s are reconstructed by the four-vector sum of the tracks w/o recon. of the intermediate mesons.
- PRL99, 191807 (2007), 535M BB
- First observation of $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*-} \tau^{+} v(5.2 \sigma)$
- PRD82, 072005(2010), 657M BB
- Hadronic tags
- Hep-ex/0910.4301, 657M BB, Preliminary

$B \rightarrow D^{(*)} \tau \nu$ from Belle

A. Bozek's averages (KEK-FF 2013):

Deviation from SM

$$
\begin{aligned}
& R(D)=0.430 \pm 0.091 \\
& R\left(D^{*}\right)=0.405 \pm 0.047
\end{aligned}
$$

(naive averages for inclusive and exclusive hadronic tags)

Correlation btw $R(D)$ and $R\left(D^{*}\right)$ neglected conservatively.

Constraint on Type-II 2HDM:

Experimental $R\left(D^{(*)}\right)$ dependence on $\tan \beta / m_{H}$ not considered.
Experimental correlation between $R(D)$ and $R\left(D^{*}\right)$ not considered.

Prospect at Belle II

- $7 \mathrm{GeV} \mathrm{e}^{-} \times 4 \mathrm{GeV}^{+}$,
- $\mathrm{L}_{\text {peak }}=8 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$,
- $\mathrm{L}_{\text {int }}=50 \mathrm{ab}^{-1}$
- $B \rightarrow \tau v$
- Precision ~ a few \%
- Need better precision for $f_{B}\left|V_{\mathrm{ub}}\right|$.
- B $\rightarrow \mu \nu, e v$
- 5σ observation expected for $\mathrm{B}(\mathrm{B} \rightarrow \mu \nu)$ sм at $\sim 10 \mathrm{ab}^{-1}$.
- $O\left(10^{-8}\right)$ sensitivity at $50 \mathrm{ab}^{-1}$.
- Interesting to compare w/B $\rightarrow \tau v$

2-parameter nonuniversal Higgs model
H. Baer, V. Barger, and A. Mustafayev,PRD85, 075010

Charged Higgs constraint (Type-II 2HDM)

Request for theory

- It is of great importance to improve precision for the SM prediction;
- $f_{B}\left|V_{\text {ub }}\right|$ for $B \rightarrow \tau v$

$$
\begin{aligned}
& \text { Present error } \\
& \Delta f_{B} \sim 5 \% \\
& \Delta\left|V_{\text {ub }}\right| \sim 10 \%+\text { incl. vs excl. saga }
\end{aligned}
$$

- Form factors for $B \rightarrow D \tau v$

Recent Lattice QCD (FNAL/MILC)
Predicts R(D)=0.316(12)(7)
~ 1 s higher than the previous estimates

Summary

- $\mathrm{B} \rightarrow \tau \nu$ and $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \tau \nu$ are powerful tools for both testing the SM and searching for NP (charged Higgs,...). Key flavor physics observables in the LHC era!
- Recent $B \rightarrow \tau \nu$ results have weakened the tension with CKM fit.
- Recent $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \tau \nu$ results disfavor SM and type-II two Higgs doublet model at a level of $>3 \sigma$.
- Final result from Belle using full data coming soon.
- It is very important to measure $B \rightarrow \tau v / D^{*} \tau v$ with a few \% precision.

Belle Il will start physics run in 2016 !

Backup

Charged Higgs in $\mathrm{b} \rightarrow \tau$

■ Extensions of the SM, which require >2 Higgs doublets, generate new flavor-changing interactions at tree-level via exchange of a charged Higgs.

- The H^{+}coupling is proportional to the fermion mass, and it is natural to look at (semi-)leptonic B decays into a τ in the final state.
$B \rightarrow \tau$ transition (MSSM)

$$
\mathcal{H}^{\mathrm{efff}}=2 \sqrt{2} G_{F} V_{q b}\left\{\left(\bar{b}_{L} \gamma^{\mu} q_{L}\right)\left(\bar{\nu}_{L} \gamma_{\mu} \tau_{L}\right)-\frac{m_{b} m_{\tau}}{m_{B}^{2}} g_{S}\left(\bar{b}_{R} q_{L}\right)\left(\bar{\nu}_{L} \tau_{R}\right)\right\} ;
$$

Effective scalar coupling;

$$
\begin{aligned}
& g_{S}=\frac{I_{B}^{2} \tan ^{2}}{M_{H}^{2}} \frac{1}{\left.\left(1-\varepsilon_{0}\right) \operatorname{an} \beta\right)\left(1-\varepsilon_{T} \operatorname{an} \beta\right)}, \\
& \text { SUSY Loop correction } \\
& \varepsilon_{0}=\varepsilon_{\mathrm{t}}=0 \text { in Type-II 2HDM }
\end{aligned}
$$

Tag for B $\rightarrow \tau \nu$

Hadronic tag for $\mathrm{B} \rightarrow \mathrm{Tv}$ by BaBar

$$
m_{\mathrm{ES}}=\sqrt{s / 4-p_{B}^{2}}
$$

- Modes: $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \pi$, etc.
- Efficiency $=\sim 0.2 \%$.
- Less background.
- pbsig determined.

Semileptonic tag for $\mathrm{B} \rightarrow \mathrm{Tv}$ by Belle

$\cos \theta_{B, D^{(+)} \ell}=\frac{2 E_{\text {beam }}^{\mathrm{cms}} E_{D^{(t)} \ell}^{\mathrm{cms}}-m_{B}^{2}-M_{D^{(+)} \ell}^{2}}{2 P_{B}^{\mathrm{cms}} \cdot P_{D^{(+)} \ell}^{\mathrm{cms}}}$

- Modes: $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mid \mathrm{Iv}$.
- Efficiency $=\sim 1 \%$.
- More background.
- ${ }^{\text {PBsig not determined. }}$

Comparison for $\mathrm{B} \rightarrow \tau \nu$ Using Hadronic Tag at Belle

	PRL 97 (2006)	This analysis	
Tag	Hadronic tag	Hadronic tag (new)	
Number of $B \bar{B}$ events $\left(\times 10^{8}\right)$	4.49	4.49	3.22
Efficiency $\left(\times 10^{-4}\right)$	3.0	11.2	11.2
Signal yield	$24.1_{-6.5}^{+7.6}$	$54.1_{-1.4}^{+18.8}$	$8.6_{-1.4 .4}^{+14.0}$
$\mathcal{B}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)\left(\times 10^{-4}\right)$	$1.79_{-0.49}^{+0.56}$	$1.08_{-0.35}^{+0.37}$	$0.24_{-0.34}^{+0.39}$

- New analysis is based on improved tag, loose event selection, and reprocessed data. - Most of the data after the selection are independent from old analysis.
- Assuming that all events in old analysis are included in new analysis, the remaining data sample in $N_{B B}=4.49 \times 10^{8}$ provides $B R \sim$ $(0.6 \pm 0.4) \times 10^{-4}(1.9 \sigma$ from old result).

$\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{(*)} \tau \nu$ by Hadronic Tag from Belle

- Using 657 M BB.
- Simultaneous fit to both subsets.
- $\left.\quad D^{*}\right)^{\prime} l v$ as control sample and normalization.
- Evidence for signals.

$$
\begin{gathered}
R\left(D^{0} \tau^{-} \bar{\nu}_{\tau} / D^{0} l^{-} \bar{\nu}_{\tau}\right)=0.70_{-0.18}^{+0.19}(\text { stat })_{-0.09}^{+0.11}(\text { syst }) \\
3.8 \sigma \\
R\left(D^{* 0} \tau^{-} \bar{\nu}_{\tau} / D^{* 0} l^{-} \bar{\nu}_{\tau}\right)=0.47_{-0.10}^{+0.11}(\text { stat })_{-0.07}^{+0.06}(\text { syst }) \\
3.9 \sigma \\
\mathcal{B}\left(D^{0} \tau^{-} \bar{\nu}_{\tau}\right)=\left[1.51_{-0.39}^{+0.41}(\text { stat })_{-0.19}^{+0.24}(\text { syst }) \pm 0.15(\text { norm })\right] \% \\
\mathcal{B}\left(D^{* 0} \tau^{-} \bar{\nu}_{\tau}\right)=\left[3.04_{-0.66}^{+0.69}(\text { stat })_{-0.47}^{+0.40}(\text { syst }) \pm 0.22(\text { norm })\right] \%
\end{gathered}
$$

BG: Dlv, D*Iv, D"'Iv, DX, ...
Syst. from PDFs and cross-feeds.

Summary for $B \rightarrow D^{(*)} \tau \nu$ from Belle

inclusive tag: PRL 99 (535M BB), PRD 82 (657M BB). hadronic tag: arXiv:0910.4301 (657M BB).

- Good agreement btw the results for inclusive and hadronic tags.
- Not significant but slightly larger than SM expectations.

