

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Perturbative QCD for the LHC

Aude Gehrmann-De Ridder

Brookhaven Forum 2013, Brookhaven National Laboratory, May 2013

Multi-particle production at LHC

- LHC brings new frontiers in energy and luminosity
- Production of short-lived heavy states (Higgs, top, SUSY...)
 - detected through their decay products
- Search for new effects in multi-particle final states
- Need precise predictions for hard scattering processes

QCD in hard scattering processes

 For processes with Q² >> M²_{proton}, factorization relates hadronic and partonic cross sections

- PDFs: determined from data
 - MSTW08, CT10, NNPDF,
- Parton-level hard scattering cross section: $\hat{\sigma}_{ab \rightarrow X}$
 - calculable in perturbative QCD as expansion in α_s
 - Depends on scales: renormalization μ_R and factorization μ_F

Jets

Clusters of hadrons observed as jets

• e.g. three-jet production at LEP

- Partons combined into jets using the same jet algorithm
 - Mostly used at LHC: anti-k_T clustering (M. Cacciari, G. Soyez, G. Salam)
- Jets in perturbative QCD
 - No algorithm dependence at leading order
 - Theoretical description more accurate with increasing order
 - Current status: at most three partons in one jet

NNLO

NLO Multiparticle production

Why NLO?

- reduce scale uncertainty of LO theory prediction
- reliable normalization and shape
- accounts for effects of extra radiation
- jet algorithm dependence
- Example: Z+j at Tevatron
 - NLO error: ~15%
 - substantial NLO effect
 - correction not constant

NLO Multi-parton production

Enormous progress in getting NLO predictions for 2→(4,5,6!) processes over the last years

Made possible by

- Improved techniques for loop amplitudes
- Crucial: a high level of automation

Process ($V \in \{Z, W, \gamma\}$)	Comments
Calculations completed since Les Houches 2005	
1. $pp \rightarrow VV$ jet	WW jet completed by Dittmaier/Kallweit/Uwer [27, 28] Campbell/Ellis/Zanderighi [29].
$2 m \rightarrow Hioos+2iets$	Z Zjet completed by Binoth/Gleisberg/Karg/Kauer/Sanguinetti [30] NLO OCD to the <i>aa</i> channel
3. $pp \rightarrow VVV$	completed by Campbell/Ellis/Zanderighi [31]; NLO QCD+EW to the VBF channel
	completed by Ciccolini/Denner/Dittmaier [32, 33] Interference QCD-EW in VBF channel [34, 35] ZZZ completed by Lazonoulos/Melnikov/Petriello [36]
	and WWZ by Hankele/Zeppenfeld [37], see also Binoth/Ossola/Papadopoulos/Pittau [38]
	VBFNLO [39, 40] meanwhile also contains WWW, ZZW, WW γ , ZZ γ , WZ γ , W $\gamma\gamma$, Z $\gamma\gamma$, $\gamma\gamma\gamma$
$4 \ m \rightarrow t\bar{t}b\bar{b}$	$WZ_j, W\gamma_j, \gamma_j j = \gamma_j$
$4. pp \rightarrow mov$	Bredens en/Deiner/Liemaier/Pozzorini [41, 42] and Bevinogua/Czykon/Papadopoulos/Pittau/Worek [43]
5. $pp \rightarrow V+3$ jets	V +3jets calculated by the Blackhat/Sherpa [44] nd P calculated by the Blackhat/Sherpa [44]
Calculations remaining from Les Houches 205	Z+sjets by Blackhat/Sherpa [40]
6. $pp \rightarrow t\bar{t}$ +2jets	, levant for $t\bar{t}H$, computed by
7. $pp \rightarrow VV b\bar{b}$, 8. $pp \rightarrow VV + 0$ interval.	Bevilacqua/Czakon/Papadopoulos/Worek [47, 48] Pozzorini et al.[25],Bevilacqua et al.[23] W+W+2iete [40] W+W-2iete [50]
	VBF contributions calculated by (Bozzi/)Jager/Oleari/Zeppenfeld [51, 52, 53]
NLO calculations added to list in 2007	
9. $pp \rightarrow b\bar{b}b\bar{b}$	Binoth et al. [54, 55]
NLO calculations added to list in 2009	
10. $pp \rightarrow V + 4$ jets	top pair production, various new physics signatures Blackhat/Sherpa: W+4jets [22], Z+4jets [20]
11. $pp \rightarrow Wb\bar{b}j$ 12. $pp \rightarrow t\bar{t}t\bar{t}$	top, new physics signatures, Reina/Schutzmeier [11] various new physics signatures
also: $pp \rightarrow 4$ jets	Blackhat/Sherpa [19]

K. Melnikov, MITP, 2013

Automation in NLO computations

- NLO predictions obtained by combining numerical packages
- Currently implemented on process-by-process basis
- Impressive list of results:
 - multiple jets (up to 4)
 - gauge boson and up to 5 jets
 - two gauge bosons with up to 2 jets
 - Top quarks with jets (up to 2) or a gauge boson
 - Higgs and up to 2 jets

$$\sigma_{(m)}^{NLO} = \int_{\Phi_m} \left[\mathrm{d}\sigma^{Born} + \mathrm{d}\sigma^V + \int_{\Phi_1} \mathrm{d}\sigma^S \right] + \int_{\Phi_{m+1}} \left[\mathrm{d}\sigma^R - \mathrm{d}\sigma^S \right]$$

Address rich phenomenology with few examples

W⁺W⁻+2 jet production at NLO

- Background to BSM searches and for $H \rightarrow WW$ decay
- Two NLO calculations completed recently (T. Melia, K. Melnikov, R. Rontsch, G. Zanderighi; N. Greiner,

G. Heinrich, P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano)

Observe: NLO corrections stabilize scale dependence

W⁺W⁻+2 jet production at NLO

- Distribution in the lepton opening angle Φ_{e^+,μ^-}
- Vary $\mu = \mu_F = \mu_R$ in $M_{VV} < \mu < 4 M_{VV}$

- NLO predictions within LO uncertainty band
 - Relevant for designing cuts for the determination of HWW coupling
 - QCD process: peaked at π
 - Higgs signal: peaked at 0

W+5 jets at NLO

• First $2 \rightarrow 6$ NLO calculation at a hadron collider

Using Blackhat + Sherpa

(Z. Bern, L. Dixon, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maitre, K. Ozeren)

- Blackhat: virtual one-loop corrections using on-shell methods
- > Sherpa: real emission, subtraction, phase space integration

Example diagram for real emission $(2\rightarrow 8)$ at tree level

Example diagram for virtual emission $(2\rightarrow7)$ at one-loop (octogon)

- Computation at the actual frontier of NLO complexity
 - Considered impossible until few years ago

W+5 jets at NLO

- Distribution in H_T^{jets} (sum of jet transverse energies)
 - Dynamical scale choice

$$\mu_R = \mu_F = \hat{H}'_T/2$$

$$\hat{H}'_{\rm T} \equiv \sum_{m} p_{\rm T}^m + E_{\rm T}^W$$

- scale variation $\mu/2 \dots 2\mu$
- Observe:
 - Scale dependence reduced at NLO
 - ratio NLO/LO constant over full kinematical range
- NLO helps to motivate the scale choice

pp→4jets at NLO

• Two calculations using on-shell methods for loop amplitudes

Dynamical scale:

 $\mu_R = \mu_F = \mu = \hat{H}_T/2$

 $\hat{H}_T = \sum_{i=1}^{N_{\text{parton}}} p_{T,i}^{\text{parton}}.$

- Blackhat+Sherpa (Z. Bern, L. Dixon, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maitre, K. Ozeren)
- NJET+Sherpa (S. Badger, B. Biedermann, P. Uwer, V. Yundin)

• NLO prediction with central scale $\hat{H}_T/2$ on top

g setesseese g

00000 g

00000

 4-to-3 jet ratio increases at NLO

pp →4jets at NLO

 To disentangle NLO effects from parton distributions and genuine NLO corrections from hard scattering process
 Use NLO partons for both NLO and LO predictions

LO with NLO partons closer to full NLO than pure LO

Jet ratios at NLO

Systematic uncertainties (th. and exp.) cancel in ratios

- Predictions more reliable
- Can be used in data-driven background estimation
- Jet ratio as function of leading jet p_T
 - NLO and parton shower both agree with data for large p_T
 - Parton shower (multiple emission) better at low p_T
 - Large uncertainty on parton shower not shown

Observe: 3/2 ratio below the data at small p_T

How to improve NLO predictions? Merging with parton showers

- Add multiple radiation from parton shower(PS) to NLO prediction (NLO) for a specific hard process
- Challenge: avoid double counting
- Two established methods
 - MC@NLO (S. Frixione, B. Webber)
 - POWHEG (P. Nason, C. Oleari)
- Combines NLO accuracy for hard radiation with multiple soft emissions
 - High-p_T: described by NLO
 - Low-p_T: described by the parton shower
- Ever increasing number of NLO predictions combined with PS

p_T-distribution in top quark pair production at Tevatron (S. Frixione, P.Nason, B.Webber)

Next frontiers with NLO

- Full automation (well in progress)
 - BlackHat (Z. Bern, L. Dixon, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maitre, K. Ozeren)
 - GoSam (G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano)
 - OpenLoops (F. Cascioli, P. Maierhöfer, S. Pozzorini)
 - MadLoop/aMC@NLO (R. Frederix et al.)
 - CutTools (G. Ossola, C. Papadopoulos, R. Pittau)
- Combining NLO computations for different multiplicities and interfacing with parton showers (proof-of-principle)
 - SHERPA (S. Höche, F. Krauss, M. Schönherr, F. Siegert)
 - MINLO (K. Hamilton, P. Nason, C. Oleari, G. Zanderighi)
 - UNLOPS (L. Lönnblad, S. Prestel)
 - FxFx (S. Frixione, R. Frederix)
- Work in progress

How to improve NLO predictions? NNLO corrections

- Expectations at LHC: Large production rates for low multiplicity processes with
 - Jets
 - Top-quark pairs
 - Vector bosons
- Allow precise determinations
 - coupling constants
 - parton distributions
- Require precise theory description: NNLO

Aude Gehrmann-De Ridder Brookhaven Forum 2013

NNLO observables at hadron colliders

NNLO predictions:

- expected to have a per-cent level accuracy
- yielding first reliable estimate of theoretical uncertainty
- For processes measured to few per cent accuracy
 - jet production
 - vector boson (+jet) production
 - top quark pair production
- For processes with potentially large perturbative corrections
 - New channels and/or phase space regions open up
 - Higgs or vector boson production

Rapidity distribution in Z production (C.Anastasiou, L. Dixon, K. Melnikov, F. Petriello)

NNLO calculations

• Require three principal ingredients (here: $pp \rightarrow 2j$)

- two-loop matrix elements
 - explicit infrared poles from loop integral
 - known for all massless $2 \rightarrow 2$ processes
- one-loop matrix elements
 - explicit infrared poles from loop integral
 - and implicit poles from single real emission
 - usually known from NLO calculations
- tree-level matrix elements
 - implicit poles from double real emission
 - known from LO calculations
- Infrared poles cancel in the sum
- Challenge: combine contributions into parton-level generator
 - Need a method to extract implicit infrared poles

Real radiation at NNLO: methods

Sector decomposition

(T. Binoth, G. Heinrich; C. Anastasiou, K. Melnikov, F. Petriello)

 pp → H, pp → V, including decays (C.Anastasiou, K. Melnikov, F. Petriello; S. Bühler, F. Herzog, A. Lazopoulos, R. Müller)

Sector-improved subtraction schemes

(M. Czakon; R. Boughezal, K. Melinkov, F. Petriello)

- ▶ $pp \rightarrow tt$ (M. Czakon, P. Fiedler, A. Mitov, 2013)
- ▶ $pp \rightarrow H+j$ (R. Boughezal, F. Caola, K. Melnikov, F. Petriello, M. Schulze, 2013)

▶ **q**_T-subtraction (S. Catani, M. Grazzini)

- ▶ $pp \rightarrow H, pp \rightarrow V, pp \rightarrow \gamma \gamma, pp \rightarrow VH$ (S. Catani, L. Cieri, D. de Florian, G. Ferrera M. Grazzini, F. Tramontano)
- Antenna subtraction (T. Gehrmann, E.W.N. Glover, AG)
 - ► $e^+e^- \rightarrow 3j$ (T. Gehrmann, E.W.N. Glover, G. Heinrich, AG; S. Weinzierl)

▶ $pp \rightarrow 2j$ (T. Gehrmann, E.W.N. Glover, J. Pires, AG, 2013)

Top quark pair production at LHC

- Large production cross section at the LHC (~250pb at 8TeV)
 - Expected experimental error of ~5% for $\sigma_{t\bar{t}}$
 - NLO+NLL predictions yield an uncertainty of ~10%
- NNLO accuracy of theory needed
- Theory (scales) CMS dilepton. 7TeV 300 ATLAS and CMS. 7TeV Calculation for the total cross section ATLAS. 7TeV completed (M. Czakon, P. Fiedler, A. Mitov) CMS dilepton. 8TeV 250 From a purely numerical code Jtot 200 based on sector-improved subtraction numerical cancellation of infrared poles $PP \rightarrow tt + X @ NNLO + NNLL$ 150 m_{top}=173.3 GeV MSTW2008NNLO(68cl) 6.5 7 7.5 8 8.5 √s [TeV] Observe: theoretical and experimental uncertainties comparable (% level)
- Differential distributions in progress

Theory (scales + pdf)

Top quark pair production at NNLO

- Impact on the determination of parton distributions
 - Top production at LHC mainly from qg and gg processes
 - Total cross section sensitive on gluon distribution
 - Inclusion into NNLO global parton distribution fit (M. Czakon, M. Mangano, A. Mitov, J. Rojo)

Higgs+jet production at the LHC

- Essential to establish the properties of the newly discovered Higgs boson
- Experiments select events according to number of jets
 - Different backgrounds for different jet multiplicities
 - H+0jet and inclusive H production known at NNLO (C.Anastasiou, K. Melnikov, F. Petriello; S.Catani, M. Grazini)
 - H+Ijet and H+2jet known at NLO
 - H+0jet and H+1jet samples of comparable sizes
- NNLO for H+ljet needed
 - gluons-only total cross section completed
 (R. Boughezal, F. Caola, K. Melnikov, F. Petriello, M. Schulze) (→see R. Boughezal parallel talk)
 - Full calculation and differential distributions in progress

Higgs+jet production at NNLO

- First results for H+jet total cross section (gluons only) (R. Boughezal, F. Caola, K. Melnikov, F. Petriello, M. Schulze)
 - using a purely numerical code
 - Based on sector-improved subtraction

 $\hfill\square$ numerical cancellation of infrared singularities

cross section multiplied by gluon luminosity

$$\beta \frac{\mathrm{d}\sigma_{\mathrm{had}}}{\mathrm{d}\sqrt{s}} = \beta \frac{\mathrm{d}\sigma(s, \alpha_s, \mu_R, \mu_F)}{\mathrm{d}\sqrt{s}} \times \mathcal{L}\left(\frac{s}{s_{\mathrm{had}}}, \mu_F\right),$$

with $\beta = \sqrt{1 - \frac{E_{th}^2}{s}}, \quad E_{th} \approx 158 GeV$

 Observe large NNLO effects close to partonic threshold region

p_{ti}> 30 GeV, k_T-alg., R=0.5

Aude Gehrmann-De Ridder Brookhaven Forum 2013

Higgs+jet production at NNLO

Scale dependence of the integrated total cross section

- Considerable stabilization at NNLO
- Corrections smallest for $\mu = M_H/2$ as in inclusive case

Di-Photon production at the LHC

- Di-photon production: irreducible background for $H \rightarrow \gamma \gamma$
 - ▶ at present determined from sideband data fits
- Discrepancy between NLO theory and data in some distributions

Require precise theoretical predictions (NNLO)

Photon isolation

Photons need to be isolated from hadrons in events

- Suppress secondary photons from hadron decays
- Complete isolation not infrared safe, nor exp. well-defined

Isolation criteria

Fixed cone isolation

$$\sum_{S < R} E_T^h < E_T^{max}$$

Smooth cone isolation (S.Frixione)

$$\sum_{\delta < R} E_T^h < E_T^{max} \left(\frac{1 - \cos(\delta)}{1 - \cos(R)} \right)^r$$

- only soft radiation allowed close to photon
- experimental implementation difficult (finite detector resolution)

Photon production mechanisms

Direct process: photon produced in hard interaction

- perturbatively calculable
- collinear quark-photon contributions present
- Fragmentation of parton into photon:
 - described by a non-perturbative parton-to-photon fragmentation function
 - absorbs collinear singularities from direct process
 - requires non-perturbative input
- Fixed cone isolation
 - both processes contribute
 - fragmentation contributions reduced but not eliminated

Smooth cone isolation

no collinear nor fragmentation contributions

Di-photon production at the LHC

Di-photon production with 2γ NNLO

Invariant-mass distribution with staggered photon cuts

- NNLO corrections large in low M_{yy} region
 - Main contribution from qg channel (dominant channel at NLO)

$$p_T^{\gamma \ hard} \ge 40 \,\text{GeV}$$
$$p_T^{\gamma \ soft} \ge 25 \,\text{GeV}$$
$$|\eta^{\gamma}| \le 2.5$$

$$20 \,\mathrm{GeV} \le M_{\gamma\gamma} \le 250 \,\mathrm{GeV}$$

Aude Gehrmann-De Ridder Brookhaven Forum 2013

ATLAS di-photon results

- Inclusion of NNLO corrections resolves discrepancy between NLO-type prediction and data
 - Despite the use of slightly different cone isolation criteria

Jet cross sections at LHC

- Jet data can be used to constrain parton distributions
- Scale and PDF uncertainties on NLO prediction of comparable size
- Need improved theory (NNLO)

$pp \rightarrow 2jets at NNLO$

- First results at NNLO available
 - gg → gg subprocess at leading colour (LC) (AG, T. Gehrmann, E.W.N. Glover, J. Pires)
 - Developed a new parton-level event generator NNLOJET
 - using antenna subtraction
 - analytic cancellation of infrared poles
- Inclusive jet p_T distribution
 - NNLO/NLO differential K-factor flat over the whole p_T range

Aude Gehrmann-De Ridder Brookhaven Forum 2013

$pp \rightarrow 2jets at NNLO$

- Inclusive jet p_T distribution: scale dependence (gluons only, LC) (AG, T. Gehrmann, E.W.N. Glover, J. Pires)
 - Dynamical scale choice: leading jet p_T
 - Same PDF for all fixed order predictions

Stabilization at NNLO

Improving NNLO with resummation

Combining NNLO with analytic resummation

- Fixed order becomes unreliable if large ratios of scales are involved, e.g. p_T ≪ M
- Perform all-order resummation of large logarithms
- Combine with NLO or NNLO
- State-of-the-art: NNLL
 - (D. de Florian, G. Ferrera, M. Grazzini, D. Tomassini;M. Beneke, P. Falgari, S. Klein, C. Schwinn;V.Ahrens, A. Ferroglia, M. Neubert, B. Pecjak, L.L. Yang
- Jet-vetoed cross section in Higgs production at NNLL+NNLO (A. Banfi, P.F. Monni, G. Salam, G. Zanderighi; T. Becher, M. Neubert)
 - Observe substantial reduction of uncertainty

Conclusions and Outlook

- Apologises for all important contributions not covered in this 40 minutes talk
- Be prepared for exciting times ahead with the LHC

Aude Gehrmann-De Ridder Brookhaven Forum 2013