

Muon p₁=54.1 GeV/c n= 0.70

> p₁=55.3 Ge⁴ η=2.22

Missing E₁: 80.2 GeV

> Jet: p_τ = 61.7 GeV/c η = 1.38

> > let:

p_T = 51.5 GeV/c η = -0.12

p_T = 135.9 GeV/c η = 0.79

Muon: p_T = 64.4 GeV/c

n = 0.29

CMS

Missing E_r 65.9 GeV

Run: 163480 Perot: 81224410

p_T = 61.7 GeV/c n = 0.81

M(eµ): 86.5 GeV/c²

-=50.1 GeV

CMS

0

Top at CMS

Rocio Vilar for CMS collaboration Brookhaven Forum 1-3 May 2013

What do we measure at CMS?

Production

- Cross section: Total and differential
- Asymmetries
- Polarizations
- Associated productions
- Resonances
- FCNC single top
- spin correlations

Decays

- BR(t->Wb)/BR(t->Wq) ⇒CMK
- W-helicity ⇒anomalous couplings
- t->H+b
- BSM top decays

Intrinsic Properties

2

- Mass
- Charge
- Lifetime, width

.....

- Top provides a huge spectrum of measurements on SM and BSM
- Many analysis: different analysis per decay/production channel
- At LHC two different cm energies
- NOT ALL COVERED HERE <a>try to give a representative overview of top in CMS
- Newest analysis are prioritized

R. Vilar

Top at CMS

Top Physics

- Heaviest quark
 maybe special role?
- Does not hadronize before decaying
 allows to study a free quark
- Decay almost 100% to Wb. top to other decays is < 0(10⁻¹³)
- Total and differential rates are calculated with good precision O(10%)
- Important background for SM higgs and other BSM searches
- Opens a door to new physics search
 May reveal non standard contributions and new particles

L(at 7 TeV) = 6.13(5.55) fb⁻¹ L(at 8 TeV)= 23.30(21.79) fb⁻¹

R. Vilar

Top Production

Top Decay

Top decays ≈100% Wb, |Vtb|>>|Vtd,|Vts| Events are classified according to W decay

Top Pair Decay Channels

Signal:

- Triggering on lepton or jets
- Up to two Iso.l high Pt leptons(l+jets or dilepton)
- Missing Transverse energy(l+jets or dilepton)
- Two to six high Et jets(l+jets, dilepton, fully hadronically)
 - Always two b's

Backgrounds

QCD multijet ⇒fully hadronic W+jets (Wbb/cc) ⇒l+jets Dibosons⇒l+jets,dileptons Drell-Yan ⇒dileptons

Single top is bkg for top pair and viceversa

Tools

b-tagging t-tagging

R. Vilar

Top Production

Cross sections: Totals and Differentials Cross Section Ratios : $\sigma(t)/\sigma(t)$, $\sigma(ttbb)/\sigma(ttjj)$ Additional jets in $t\underline{t}$ events Charge asymmetry

Top Pair Cross sections

Combination up to 1.1 fb⁻¹ at 7 TeV (CMS PAS TOP-11-024)

σ=165.8±2.2(stat) ±10.6(syst) ± 7.8(lumi) pb⁻¹

σ=173.8±2.3(stat) ±7.6(syst) ± 6.3(lumi) pb⁻¹ LHC results

Combination up to 2.8 fb⁻¹ at 8 TeV (CMS PAS TOP-12-007)

 σ =227±3(stat) ±11(syst) ± 10(lumi) pb⁻¹

•Measuments are from likelihood fits (l +jets,hadronic) or counting methods (dileptons)

•Data driven estimation for the main back. contributions

Ratio: $\sigma(8 \text{ TeV}) / \sigma(7 \text{ TeV}) = 1.41 \pm 0.10$

R. Vilar

Differential Cross sections

Done at $\sqrt{s}=7$ and $\sqrt{s}=8$ TeV in l+jets and dilepton

Measure as a function of kinematic properties of final state objects(l,b), top and ttbar system

- tt reconstruction:
 - L+jets : constraint kinematic fitter (CMS PAS TOP-12-027)
 - Dilepton channel use an alternative kinematic reconstruction with top mass range wider. (CMS PAS TOP-12-028)
- 5.4% and 3.9% typical Syst. Uncertainties for l+jets and dilepton channels respectively
- Normalized differential cross sections -> cancels out systematic uncertainties

Good agreement between data and theoretical predictions, no deviation observed

R. Vilar

Jet multiplicity in $t\overline{t}$

At $\sqrt{s}=7$ TeV

- This probes the simulation for high jet multiplicity QCD at top scale
- Measure the initial and final [§] state radiation contributions
 - Important for Top, Higgs and many BSM analyses
 - Measurement unfolded at MCs level in visible experimental phase space

MC@NLO shows some discrepancy in the number of jets at high Pt jets

> Tt with veto on extra jets Constraint QCD radiation

R. Vilar

tt charge asymmetry

 NLO correction **√** CMS Preliminary 04 🗕 Data 5.0 fb⁻¹ at $\sqrt{s} = 7$ TeV introduce small EFT dilepton NLO prediction asymmetries in t and tbar rapidity 0.2 distributions at ppbar production 1/ס dס/d(ly ְl-ly l) **CMS** Preliminary 0 (Data - BG) Unfolded At LHC initial state are 5.0 fb⁻¹ at $\sqrt{s} = 7$ TeV $A_{c}=0.050 \pm 0.043$ **ICatNLO** Simulation symmetric **>** no dilepton 1.5 |y_| differences 0.5 Tevatron top 0.5 anti-top Rapidity top 2 |y_l-ly_l LHC 0 anti-top Dilepton channel (CMS PAS TOP-12-010) $A_c = 0.050 \pm 0.043 (stat)^{+0.010} - 0.039 (syst)$ $\Delta |\mathbf{y}| = |\mathbf{y}_t| - |\mathbf{y}_{\bar{t}}|$ Rapidity $A_{\mu c}=0.010\pm0.015(stat)\pm0.006(syst)$ $A_{c} = \frac{N(\Delta \mid y \mid > 0) - N(\Delta \mid y \mid < 0)}{N(\Delta \mid y \mid > 0) + N(\Delta \mid y \mid < 0)}$ L+jets channel (Phys. Lett. B717 (2012) 129) $A_c = 0.004 \pm 0.010(stat) \pm 0.011(syst)$ R. Vilar 10 Top at CMS

Single Top Cross Section

$\sigma(t)/\sigma(\bar{t})$ in t-channel

At \sqrt{s} =8 TeV

pp collision u density is ≈ 2x d density ⇒is expected to be larger than 1

Top decaying leptonically to e or $\boldsymbol{\mu}$

Background estimations through data driven techniques Performance a fit in the η distribution of the non b-tagged jet for the l⁺(l⁻) distributions simultaneously

 $\begin{array}{l} \texttt{R= 1.76\pm0.15(stat)\pm0.22(syst)} \\ \texttt{Agrees with predictions} \\ \texttt{SF(R_{exp}/R_{SM})=0.96\pm0.08(stat)\pm0.12(syst)} \end{array}$

 $\sigma(top) = 49.9 \pm 1.9(stat) \pm 8.9(syst) \text{ pb.}$ $\sigma(anti-top) = 28.3 \pm 2.4(stat) \pm 4.9(syst) \text{ pb.}$

R. Vilar

Top decays

BR(t->WB)/BR(t->Wq) W-helicity Spin correlations

R=BR(tWb)/BR(tWq)

Top at CMS

CMS PAS TOP-12-035

•Dilepton channel: two high iso. Pt leptons, with MET and two jets

Back. are estimated using Data Driven techniques
Extract with PRL fit on jet multiplicity that accounts for

•Fraction of ttbar in sample and single-t

At $\sqrt{s}=8$ TeV

•Fraction of events with correct jet assignment

•B-tagging efficiency and misidentification

Most precise measurement

W helicity

V-A SM nature of the tWb is tested with $\cos\theta^*$ F_L = 0.311±0.005, F₀= 0.687±0.005, F_R=0.0017±0.0001 SM: V_L ≠ 0 and g_R=g_L=V_R=0

Use a likelihood method

CMS PAS TOP-12-020

single-top(l+jets at 7+8 TeV) $F_L = 0.293 \pm 0.069(\text{stat.}) \pm 0.030(\text{syst})$ $F_0 = 0.713 \pm 0.114(\text{stat}) \pm 0.023(\text{syst})$ $F_R = -0.006 \pm 0.057(\text{stat}) \pm 0.027(\text{syst})$

CMS PAS TOP-12-015

ttbar(dilepton at 7 TeV) $F_L = 0.288 \pm 0.035(\text{stat.}) \pm 0.050(\text{syst})$ $F_0 = 0.698 \pm 0.057(\text{stat.}) \pm 0.063(\text{syst})$ $F_R = 0.014 \pm 0.027(\text{stat.}) \pm 0.055(\text{syst.})$

CMS PAS TOP-12-025

Top at CMS

ATLAS+CMS(at 7 TeV) $F_L = 0.359 \pm 0.021(\text{stat.}) \pm 0.048(\text{syst})$ $F_0 = 0.626 \pm 0.034(\text{stat}) \pm 0.048(\text{syst})$ $F_R = -0.015 \pm 0.034$

R. Vilar

Top Properties

Mass Mass differences polarizations

Mass measurements

- **0** Templete Fit Method (j+jets)
- O Ideograms Method(l+jets, fully hadronic)
- O Analytical Matrix weighting technique(dileptons)
- 0 Full kinematic analysis(dileptons)
- 0 Kinematic endpoints(dileptons)
- 0 In-situ jet energy scale (JES/JSF) calibration

Combination done with BLUE Mt= 173.4±0.4(stat) ±0.9(syst) GeV

Top at CMS

Top mass dependence with top kinematics

CMS PAS TOP-12-029

Relation contains (non)perturbative corrections, expected to depend on event kinematics

Check the mass dependence with kinematic variables

test for color conections effects, ISR/FSR and b-quark kinematics

Precision does not allow to distinguish between different tuning \Rightarrow

data/MC agreement rule out significant biases

Top – anti top mass difference

- O CPT predicts equal mass for top-antitop quarks ⇒ deviation from this hypothesis deep impact on SM
- O Using l+jets channel, data is divided in l⁺ or l⁻ plus 3 jets to obtained the top decays. The ideogram methods is used to obtained the mass for top or anti-top and finally

 $\Delta m_{top} = m_t - m_t^-$

Results consistent with SM, precision higher than existing measurement

R. Vilar

Top at CMS

20

CMS PAS TOP-12-031

Many more analysis done in CMS

They compress production, decays, propeties, search for new physics with top

R. Vilar

- **0** Top spin correlations
- 0 ttV production
- **0** Top polarization
- **0** Search for FCNC in top decays
- **0** Search for resonances in ttbar production
- **0** Search for pair production of new physics resonances decaying into ttbar
- **0** Search for tb resonances
- O Search for top partners with 5/3 charged

21

- **0** Search for b' and t'
- **0** Search for Z' into top pairs
- 0 Etc...

More results into :

<u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u> <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G</u> (for search of NP with tops)

Top at CMS

Conclusions

- **0** Top is still a very exciting topic at colliders
- **0** High precision measurements at LHC are reached now
- **0** Large statistics samples allows to perform detailed studies of the characteristic of this quark
- **0** So far everything agrees with SM prediction for this quark.
- **0** Finalizing the results with 8 TeV trying to include the full statistics. More results and better precision expected before the beginning of the LHC again.
- **0** Very good Top quark physics understanding is essential for the CMS search of new physics program

0 Full CMS potential for top physics is still underway, stay tune for more news

Additional material

More information about the talk

LHC performance

Spectacular performance of the LHC, CMS and ATLAS!

- Over 20 fb⁻¹ data in pp collisions recorded in experiments in 2011 and 2012:
- ~ 5 fb⁻¹ @ 7 TeV: luminosity 3 10^{33} cms⁻² s⁻¹ \rightarrow ~ 0.8M tt events ~ 14 fb⁻¹ @ 8 TeV: luminosity 7 10^{33} cms⁻² s⁻¹ \rightarrow ~ 3.0M tt events
- Data taking efficiency > 90%

R. Vilar

Plans: to get 30 fb⁻¹ before end of 2012

Experimental techniques

CMS

0 Isolated Leptons (e, μ or tau)

0 isolation cuts against QCD backgrounds

0 Pile-up subtraction

- 0 based on charged component
- **0** Residual area based correction for neutral

0 Jet (and missing ET)

- 0 CMS: particle flow (track/calo combination)
- **0** optimal resolution and scale uncertainties
- 0 minimal flavour response diferentes

0 B-tagging

0 combination of several techniques (vertex, impact parameter, track distributions within jets)

Top quarks require high precision calibration of jets and b-tagging

$= 1.6 \text{ fb}^{-1}$ √s = 8 TeV CMS preliminary, L 10JEC uncertainty [%] Total uncertainty 9 Absolute scale Relative scale 8 7 6 5 Extrapolation Pile-up, NPV=12 - Jet flavor Time stability Anti-k_T R=0.5 PF |η_{iet}|=0 201000 p₋ (GeV)

Uncertainties comparable

to 2010, 2011.

R. Vilar

Top at CMS

Experimental technique

Top at CMS

R. Vilar

b-tagging

efficiencies of the light quarks versus the b's For the different algorithms

MC simulations

full NNLO now available for $qq \rightarrow tt$

Calculations

NLO NLO+NNLL and approx. NNLO full NNLO (available for qq)

Event generators

NLO+PS MC@NLO POWHEG Tree-level (+ HO) matched PS MADGRAPH ALPGEN SHERPA PYTHIA (LO)

ttbar sample tipically normalized according to one of the existing approximate NNLO cross sections

R. Vilar

Modeling uncertanties

- ttbar signal compared with different MC generators to access differences netween the NLO+PS generators, as well compare ME+PS with NLO+PS event generators.
- Compare PYTHIA and HERWIG to access variations in the PS and hadronization description.
- Study the impact of the choice of scales: vary the renormalization and factorization scales by 0.5 and 2.0 w.r.t. The different default values, both for signal and the most important backgrounds (V+jets)
- Effect of increasing or decreasing the amount of ISR and FSR is evaluated with dedicated samples: PYTHIA (for CMS) and ACERMC (for ATLAS).
- For those samples with ME+PS: study the choice of matching scale by varying the scale w.r.t the default value some amount.
- PDF choice: using error PDF sets (LHAPDF for CMS) or PDF4LHC prescription in case of ATLAS.

Differential xs

- Cut and count approach
- Data driven corrections
 - Drell-Yan background (dileptons)
 - Trigger efficiencies
 - Lepton identification and isolation
- Corrected to parton or particle level and for detector effects
 - Purity & stability typically > 50%
- Regularised (SVD) unfolding (MadGraph+Pythia MC)
- Normalised to in-situ cross section

R. Vilar

Top at CMS

Top recontruction

Dileptons

- Kinematic reconstruction
- Underconstrained
- Input
 - 2 leading jets
 - 2 leptons
 - MET
- Constraints
 - mw
 - MET = \sum (neutrino p_T)

R. Vilar

- $m_t = m_t [100 \text{ GeV}, 300 \text{ GeV}]$
- Chose solution by comparing neutrino energy spectrum to prediction
- For m_{tt} only: 4-vector sum of 2 leading jets, MET, 2 leptons

- Lepton + jets
 - Kinematic fit
 - Input
 - Lepton
 - up to 5 leading jets
 - Neutrino momentum = MET (initally)
 - Vary 4-Vectors within Resolution
 - mt = mt
 - mw

Top at CMS

• Chose solution with minimum χ^2

Lepton (т) + jets channel

Relative uncertainty [%]				
let energy correction	± 10.5			
let energy resolution	± 1.9			
Unclustered $E_{\rm T}^{\rm miss}$	\pm 6.6			
Tau energy correction	\pm 6.6			
Tau identification	\pm 9.0			
Tau trigger leg	\pm 7.4			
B-tagging	\pm 2.8			
Pileup	+4.9 -1.4			
Top quark mass	± 2.8			
Q^2 scale	± 2.2			
Parton matching	± 3.0			
PDF	\pm 5.2			
Theoretical cross section	\pm 2.8			
Systematic	\pm 20.0			
Statistical from fit and MC	±7.7			
Statistical from trigger	± 1.4			
Total statistical	\pm 7.8			

Main systematics:

τ identification (~ 9%), JES (~

10%)

Xs All hadronic channel

Main systematics: b-tagging eciencies (~ 16%), jet energy scale (~ 14%), and background estimation (~ 12%)

Source	Relative Un	certainty (%)
B-Tagging		15.7
Jet Energy Sc	ale	13.5
Background		12.2
Q^2 Scale		8.7
Tune		8.1
ISR/FSR		5.6
Top Quark M	lass	5.3
Parton Show	er Matching	5.2
Jet Energy Re	esolution	4.8
Trigger		4.5
Pile-Up		0.6
Systematic		29.1
Statistical		14.3
Luminosity		6.0
Total Uncerta	unty	33.0

Xs Lepton (e/µ) + jets channel

@ 7TeV <u>1.1 fb</u>⁻¹

@ 8TeV

TABLE 1. Overview of the systematic uncertainties on the cross section measurement. Uncertainties marked with (*) are obtained from 7 TeV.

Source	Muon	Electron	Combined
	Analysis	Analysis	Analysis
Quantity	U	ncertainty	(%)
Lepton ID/reco/trigger	3.4	3	3.4
$ \! E_{\mathrm{T}} $ resolution due to unclustered energy	< 1	< 1	< 1
$t\overline{t}$ +jets Q^2 scale	2	2	2
ISR/FSR	2	2	2
ME to PS matching	2	2	2
Pile-up	2.5	2.6	2.6
PDF	3.4	3.4	3.4
Profile Likelihood Parameter	U	ncertainty	(%)
Jet energy scale and resolution	4.2	4.2	3.1
<i>b</i> -tag efficiency	3.3	3.4	2.4
$W+$ jets Q^2 scale	0.9	0.8	0.7
Combined	7.8	7.8	7.3

Systematic	Combined fit
	$\delta \sigma_{t\bar{t}}$ (%)
Jet Energy Scale	+4.3 - 5.0
Jet Energy Resolution	+0.5 - 1.1
Pileup	-0.7 + 0.7
Background Composition	-0.1 + 0.1
W+Jets template shape from unweighted 7TeV	0.9
Normalisation of data-driven multijet shape	0.9
b tagging efficiency measurement	8.0
Trigger Efficiency	-2.8 + 3.2
Lepton selection	-2.4 + 2.8
Factorization scale (*)	+6.2 - 2.1
ME-PS Matching threshold (*)	+4.6 - 3.1
PDF uncertainties (*)	+1.6 - 2.0
Top Quark Mass (*)	+0.3 + 1.4
Luminosity	4.4
Total	+12.7 - 11.4

Xs Dilepton (e, µ) channel

@ 7TeV

<u>2.3 fb</u>⁻¹

Source	Uncertainty on $\sigma_{t\bar{t}}(pb)$
Diboson	0.4
Single top	2.3
Drell-Yan	1.0
Non-W/Z leptons	0.6
Lepton Efficiencies	1.7
Lepton Energy Scale	0.5
Jet Energy Scale	2.8
Jet Energy Resolution	0.5
E_T Efficiency	1.9
b-tagging	1.1
Pileup	0.7
W Branching Ratio	2.7
Q^2 scale of QCD	1.0
Matching partons to showers	1.0
Total systematic	5.6
Integrated luminosity	3.6
Statistical	2.6

@ 8TeV

Source	Cont. to the $\sigma_{t\bar{t}}(pb)$	Cont. to the $\sigma_{t\bar{t}}(\%)$
VV	0.3	0.1
Single top - tW	2.2	1.0
Non W/Z leptons	3.2	1.4
Drell-Yan	1.6	0.7
Lepton efficiencies	4.0	1.8
LES	0.7	0.3
JES	5.7	2.5
JER	3.8	1.7
B-tagging	2.0	0.9
Pile-up	3.3	1.5
Branching ratio	3.9	1.7
Event Q^2 scale	1.6	0.7
Matching	1.6	0.7
Total Systematic	10.7	4.7
Luminosity	10.0	4.4
Statistics	3.1	1.4

LHC combination @ 7TeV

- LHC combination from TOPLHCWG working group : combination of the ATLAS and CMS combinations (ATLAS-CONF-2012-134, CMS PAS TOP-12-003).
- BLUE method used : simple and compatible results with likelihood based methods.
- Type of uncertainties and their correlations :
 - Detector modeling : uncorrelated.
 - JES : uncorrelated (assumption tested).
 - Signal modeling : fully correlated (assumption tested).
 - Backgrounds estimated from data : uncorrelated.
 - Backgrounds estimated from simulation : fully correlated.
 - Luminosity : partially correlated, bunch charge uncertainty (fully correlated, 3% for ATLAS, 3.1% for CMS) or detector related uncertainty (uncorrelated 2.4% for ATLAS, 3.6% for CMS).

LHC combination @ 7TeV

ATLAS-CONF-2012-134, CMS PAS TOP-12-003 ATLAS CMS Correlation LHC combination Cross-section 177.0 165.8 173.3 Uncertainty Statistical 3.2 2.2 0 2.3JES 2.7 3.5 0 2.1 Detector model 5.3 8.8 0 4.6 Signal model Monte-Carlo 4.2 1.1 1 3.1 Parton shower 1.3 2.2 1.6 1 Radiation 0.8 4.1 1.9 1 PDF 1.9 4.1 2.6 1 Background from data 1.5 3.4 0 1.6 Background from MC 1.6 1.6 1.6 1 Method 2.4 n/e 1.6 1 W leptonic branching 1.01.0 1 1.0Luminosity Bunch current 5.3 51 5.3 1 Detector effects 4.3 5.9 0 3.4 Total systematic 10.8 14.2 9.8 11.3 10.1 Total 14.4

R. Vilar

Top at CMS

Mass systematic unc.

	Dileptons	Lepton+jets	Dileptons	Lepton+jets	All jets
	2010	2010	2011	2011	2011
Measured $m_{\rm t}$	175.50	173.10	172.50	173.49	173.49
JES	4.0	2.3	1.2	0.75	1.1
Lepton energy scale	0.30		0.14	0.02	0.01
MC generator	0.50		0.04	8	
ISR/FSR	0.20	0.20		10	
PDF	0.50	0.10	0.09	0.07	0.06
Factorization scale	0.60	1.10	0.55	0.24	0.22
ME-PS matching threshold	0.70	0.40	0.19	0.18	0.24
Signal	2				
Jet energy resolution	0.50	0.10	0.14	0.23	0.15
b-tagging	0.40	0.10	0.09	0.12	0.06
MET scale	0.10	0.40	0.12	0.06	
Detector Modeling					
Underlying event	1.30	0.20	0.05	0.15	0.32
Background MC	0.10	0.20	0.05	0.13	(****)
Background Data	<u> </u>	0.40	<u> </u>	<u>8</u> 3	0.20
Fit calibration and MC	0.20	0.10	0.40	0.06	0.13
Pile-up	1.00	0.10	0.11	0.07	0.06
Color reconnection	n/e	n/e	0.13	0.54	0.15
Trigger		i and		8-0	0.24
Total Systematic Uncertainty	4.52	2.63	1.41	1.03	1.25

R. Vilar

Systematic unc diff xs

- **O** Global uncertatintiesdue to normalisation
- **0** Remaining shape uncertainties evaluated individually for each bin:
 - **0** Jet energy scale and resolution
 - **0** Lepton identification and isolation efficiencies
 - 0 Trigger efficiencies
 - **0** B-tagging efficiencies
 - **0** Pile up modelling
 - **0** Top mass uncertainties
 - **0** Scale and matching scale variations (dominant)
 - 0 Hadronisation (POWHEG+Pythia, MC@NLO+Herwig)0 PDF variations

R. Vilar	Top at CMS	38

T-channel cross section

7TeV

		Uncertainty source	NN	BDT	$\eta_{j'}$	
	τ ^μ	Statistical Limited MC data	-6.1/+5.5% -1.7/+2.3%	-4.7/+5.4% +3.1%	±8.5%	Ī
6	tal unce	Jet energy scale Jet energy resolution	-0.3/+1.9% -0.3/+0.6%	±0.6% ±0.1%	-3.9/+4.1% -0.7/+1.2%	1
IN, BDT	perimen	b tagging Muon trigger + reco. Electron trigger + reco.	-2.7/+3.1% -2.2/+2.3% -0.6/+0.7%	±1.6% ±1.9% ±1.2%	±3.1% -1.5/+1.7% -0.8/+0.9%	
alised (h	ā	Hadronic trigger Pileup MET modeling	-1.3/+1.2% -1.0/+0.9% -0.0/+0.2%	±1.5% ±0.4% ±0.2%	±3.0% -0.3/+0.2% ±0.5%	
Margir	Backg. rates	W+jets light flavor (u, d, s, g) heavy flavor (b, c) ff QCD, muon QCD, electron s-, tW ch., dibosons, Z+jets	$\begin{array}{r} -2.0'+3.0\%\\ -0.2'+0.3\%\\ -1.9'+2.9\%\\ -0.9'+0.8\%\\ \pm 0.8\%\\ \pm 0.4\%\\ \pm 0.4\%\\ \pm 0.3\%\end{array}$	$\begin{array}{c} -3.5/+2.5\% \\ \pm 0.4\% \\ -3.5/+2.5\% \\ \pm 1.0\% \\ \pm 1.7\% \\ \pm 0.8\% \\ \pm 0.6\% \end{array}$	$\begin{array}{c} \pm 5.9\% \\ n/a \\ n/a \\ \pm 3.3\% \\ \pm 0.9\% \\ -0.4/\pm 0.3\% \\ \pm 0.5\% \end{array}$	-+
3 5	Iotai	Luminosity	-1.//+1.9%	-1.1/+1.8%	nva	_
Not marginalised	Theor. uncert.	Scale, ft Scale, W+jets Scale, t-, s-, tW channels Matching, ft t-channel generator PDF Total theor, uncertainty	$\begin{array}{r} -3.3'+1.0\%\\ -2.8'+0.3\%\\ -0.4'+1.0\%\\ \pm 1.3\%\\ \pm 4.2\%\\ \pm 1.3\%\\ -6.3'+4.8\%\end{array}$	$\begin{array}{r} \pm 2.2\% \\ \pm 0.9\% \\ -0.0/+3.4\% \\ \pm 0.2\% \\ \pm 0.4\% \\ \pm 4.6\% \\ \pm 1.3\% \\ -4.9/+5.9\% \end{array}$	$\begin{array}{r} -4.0'+2.1\%\\ n/a\\ -2.2'+2.3\%\\ \pm 0.4\%\\ \pm 2.5\%\\ \pm 2.5\%\\ -5.6'+4.0\%\end{array}$	M
Syst	+ theor	+ luminosity uncert.	-8.1/+7.8%	-8.1/+8.4%	±10.8%	_
Total	(stat. +	syst. + theor. + lum.)	-10.1/+9.5%	-9.4/+10.0%	±13.8%	

8TeV

Uncertainty source	in pb	relative
Statistical	± 5.7	±7.2 %
W+jets and ttmodeling	± 3.6	± 4.5 %
JES	- 6.2 / + 4.7	- 7.8 / + 5.8 %
JER	- 0.8 / + 0.3	-1.0 / +0.4 %
Unclustered ₽ _T	-0.8 / +0.7	-1.0 / $+0.9$ %
Pileup	- 0.5 / + 0.3	-0.6 / +0.4 %
Muon trigger + reconstruction	-4.1 / +4.0	-5.1 / +5.1 %
Q^2	± 2.5	±3.1 %
tī, rate	- 1.5 / + 1.7	- 1.9 / + 2.1 %
QCD, rate	± 0.7	±0.9 %
t-channel generator	± 4.4	±5.5 %
Other backgrounds, rate	± 0.5	±0.6 %
b-tagging	± 3.7	$\pm 4.6 \%$
PDF	± 3.7	± 4.6 %
Simulation statistics	± 1.8	±2.2 %
Total systematics	± 11.0	±13.7 %
Luminosity uncertainty	± 4.0	±5.0 %
Total	± 13.0	±16.3%

R. Vilar

Systematic unc. W helicity

	$\sqrt{s} =$	8 TeV	$\sqrt{s} =$	7 TeV			
Systematic source	$\Delta F_{\rm L}$	ΔF_0	ΔF_L	ΔF_0	Systematic source	$\Delta F_{\rm L}$	ΔF_0
JES	0.006	0.006	0.020	0.020			
JER	0.008	0.003	0.015	0.010	JES	0.007	0.007
unclustered energy	0.013	0.003	0.015	0.015	JER	0.011	0.003
pileup	0.002	0.003	0.004	0.000	unclustered energy	0.018	0.010
b-flavored scale factor	0.004	0.006	0.009	0.009	pileup	0.002	0.002
non-b-flavored scale factor	0.004	0.007	0.002	0.001	b-flavored scale factor	0.003	0.001
single-top generator	0.008	0.014	0.004	0.004	non-b-flavored scale factor	0.001	0.002
Q ² scale	0.009	0.012	0.040	0.007	single-top generator	0.005	0.009
m _{top}	0.005	0.006	0.010	0.010	Q ² scale	0.006	0.008
PDF	0.005	0.005	0.000	0.000	m _{top}	0.001	0.001
tt normalization	0.002	0.003	0.008	0.008	PDF	0.003	0.003
QCD shape	0.002	0.002	0.004	0.004	t t normalization	0.003	0.002
W+jets shape	0.008	0.010	0.010	0.010	QCD shape	0.003	0.003
integrated luminosity	0.003	0.003	0.007	0.007	W+jets shape	0.012	0.011
SM W-helicity reference	0.004	0.003	0.001	0.002	integrated luminosity	0.010	0.010
stematic uncertainty (w/o generator)	0.022	0.021	0.054	0.035	SM W-helicity reference	0.002	0.001
total systematic uncertainty	0.024	0.026	0.054	0.035	total systematic uncertainty	0.030	0.023

R. Vilar