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Walking Technicolor (WTC)

• a candidate of the new physics beyond the Standard Model of particles

• could replace Higgs sector of the Standard Model

• Higgs sector is a low energy effective theory of WTC

• free from the gauge hierarchy problem (naturalness)

• gives explanation of the electro-weak gauge symmetry breaking,

• thus origin of mass of the elementary particles

• “Higgs” = pseudo Nambu-Goldstone boson

• due to breaking of the approximate scale invariance
➡Techni Dilaton  (Yamawaki, Bando, Matsumoto)



Requirements for the successful WTC theory

• spontaneous chiral symmetry breaking

• running coupling “walks” = slowly changing with μ → nearly conformal

• large mass anomalous dimension: γm~1

• light scalar 0++   ( mH = 126 GeV @ LHC ! )

• with input Fπ = 246 /√N GeV   (N: # weak doublet in techni-sector)

• to reproduce W± mass

• typical QCD like theory: MHad>>Fπ  (ex.: QCD: mρ/fπ~8)

• Naive TC: MHad ≳ 1,000 GeV

• 0++ is a special case: pseudo Nambu-Goldstone boson of scale inv.
➡ is it really so ?
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models being studied:

• SU(3)

• fundamental: Nf=6, 8, 10, 12, 16

• sextet: Nf=2

• SU(2)

• adjoint: Nf=2

• fundamental: Nf=8

• SU(4)

• decuplet: Nf=2
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Conformal window Luigi Del Debbio

conformal window: SU(3) with n f = 16,12,10,9,8,6 flavors in the fundamental representation,
SU(2) with n f = 6 flavors in the fundamental, SU(2) with n f = 2 flavors in the adjoint represen-
tation, and SU(3) with n f = 2 flavors in the two-index symmetric (sextet) representation. At these
early stages of the nonperturbative studies of the conformal window it is important to try to identify
a paradigm to guide the numerical investigations, rather than trying to get exhaustive results on one
specific theory.
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Figure 3: Boundaries of the conformal window for SU(N) gauge theories with n f species of Dirac fermions.
The four bands represent respectively fermions in the fundamental (Fund), adjoint (A) and two-index sym-
metric and antisymmetric (2S,2A) representations. The upper limit of each band corresponds to the number
of flavors where asymptotic freedom is lost, as obtained from one-loop perturbative computations. The
lower limit of each band yields the number of flavors above which the theories develop an IR fixed point.
The location of these lower limits relies upon assumptions about the nonperturbative dynamics of the theo-
ries. Lattice simulations can provide first-principle evidence in favour (or against) this picture, and compute
the critical exponents that characterize the fixed points. Figure courtesy of F. Sannino.

2. Tools

Numerical tools that were originally designed for investigating lattice QCD have been used in
order to identify the existence of IRFPs. We describe briefly the main ideas, the observables that
are used in the different approaches, and their expected behaviour in the presence of an IRFP. For
each case we try to emphasize the sources of systematic errors that need to be kept under control
in order to draw robust conclusions from numerical data.

2.1 Phase structure of the lattice theories.

Lattice simulations are performed by discretizing the action of a given theory on a Euclidean
space-time lattice. At weak coupling the RG flow can be computed perturbatively, and the relevant
parameters are easily identified. For an asymptotically-free gauge theory, g = 0 is an UV fixed
point that defines the usual continuum limit of the lattice theory. The IRFP that we are seeking is
a fixed point on the massless renormalized trajectory that originates from the continuum limit. As
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Simulation

• Fermion Formulation: HISQ (Highly Improved Staggered Quarks)

• being used for state-of-the-art QCD calculations / MILC,..

• Gauge Field Formulation:tree level Symanzik gauge

• Nf=4: β=6/g2=3.7,    V=L3xT: L/T=2/3; L=12, 16

• Nf=8: β=6/g2=3.8,    V=L3xT: L/T=3/4; L=18, 24, 30, 36

• Nf=12 (two lattice spacings):   [LatKMI collab. PRD86 (2012) 054506]

• β=6/g2=3.7,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.04≦mf≦0.2

• β=6/g2=4.0,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.05≦mf≦0.24

• using MILC code v7, with modification: HMC and speed up in MD



staggered flavor symmetry for Nf=12 HISQ

• comparing masses with different staggered operators for π & ρ for β=3.7

• excellent staggered flavor symmetry, thanks to HISQ
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FIG. 20. The effective mass of both two operators at β = 3.7, 4 on (L/a, T/a) = (30, 40). {fig:spectrum}

Appendix B: Analysis of conformal hypothesis fit

{sec:conformal_fit}

In this appendix we show the details of fit results on the conformal hypothesis.

In the conformal hypothesis with a finite volume, we make an attempt to use the fit

functions given in Eq. 14. In the generic situation, however, we do not know how and what

kind of such correction terms can appear from the RG analysis. Therefore in this appendix

we fix the value of the exponent α to a certain value in the fit since it is hard to determine

both two exponents of the power behavior from the fit. We consider three possible value of

alpha as α = (3 − 2γ)/(1 + γ), 1 and 2, so we denote these fit functions as fit b-1, fit b-2

and fit b-3, respectively. We carry out simultaneous fit with above fit functions using all the

data for Mπ, Fπ and Mρ with common anomalous dimension γ and α. We also use same

data points for the fit as in the section V. As already discussed in the section V, additional

correction terms improve the accuracy of the fit efficiently for both case of β = 3.7 and

β = 4. On the other hand, each of the fit results with correction term gives same magnitude

of χ2/dof. Thus in this analysis it is not easy to determine both of γ and α.
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Hadron spectrum: 
           response to mass (mf) deformation

• IR conformal phase:

• coupling runs for μ<mf:   like nf=0 QCD with ΛQCD~mf

• multi particle state :  MH ∝ mf1/(1+γm*);   Fπ ∝ mf1/(1+γm*)    (criticality @ IRFP)

• SχSB phase:

• ChPT

• at leading:  Mπ2 ∝ mf,  ;   Fπ = F + c mf



a crude study using ratios

• conformal scenario:

• MH ∝ mf1/(1+γm*);   Fπ ∝ mf1/(1+γm*)   for small mf

★  Fπ/Mπ → const.                          for small mf

★  Mρ/Mπ → const.                         for small mf



a crude analysis: Fπ/Mπ vs Mπ

Nf=12
Recent study of LatKMI Collaboration

Nf = 12: PRD86(2012)054506; Nf = 8: arXiv:1302.6859
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a crude analysis: Fπ/Mπ vs Mπ

• small mass region: flat ⇔ hyperscaling ⇔ consistent with conformal scenario

Nf=12
Recent study of LatKMI Collaboration

Nf = 12: PRD86(2012)054506; Nf = 8: arXiv:1302.6859
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a crude study using ratios

• conformal scenario:

• MH ∝ mf1/(1+γm*);   Fπ ∝ mf1/(1+γm*)   for small mf

★  Fπ/Mπ → const.                          for small mf

★  Mρ/Mπ → const.                         for small mf

• chiral symmetry breaking scenario:

• Mπ2 ∝ mf,  ;   Fπ = F + c’ Mπ2      for small mf

★  Fπ/Mπ → ∞                                 for   mf → 0



a crude analysis: Fπ/Mπ vs Mπ

mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)

0.05 600 0.3513(12) 0.4332(19) 0.0738(8)

0.06 500 0.3994(15) 0.4888(14) 0.0840(7)

0.08 500 0.4875(9) 0.5965(10) 0.1017(6)

0.1 500 0.5670(7) 0.6927(14) 0.1167(3)

0.12 500 0.6460(7) 0.7899(22) 0.1328(4)

0.16 400 0.7877(6) 0.9549(14) 0.1586(5)

0.2 400 0.9193(6) 1.1049(22) 0.1821(6)

TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}

mf # trj. Mπ Mρ Fπ

0.05 600 0.3163(27) 0.3693(49) 0.0633(9)

0.06 600 0.3634(15) 0.4336(22) 0.0729(4)

0.08 600 0.4508(12) 0.5311(21) 0.0898(7)

0.1 600 0.5227(9) 0.6174(21) 0.1017(7)

0.12 600 0.5966(10) 0.7027(22) 0.1149(7)

0.16 500 0.7308(8) 0.8519(12) 0.1380(7)

0.2 500 0.8568(6) 0.9921(6) 0.1585(8)

TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}
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FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,

11

Nf=4
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a crude analysis: Fπ/Mπ vs Mπ

• tends to diverge towards the chiral limit (Mπ→0)

• spontaneous chiral symmetry breaking
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a crude analysis: Fπ/Mπ vs Mπ
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a crude analysis: Fπ/Mπ vs Mπ

• tends to diverge towards the chiral limit (Mπ→0)
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a crude analysis: Fπ/Mπ vs Mπ

• tends to diverge towards the chiral limit (Mπ→0)

• spontaneous chiral symmetry breaking, likely
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• chiral symmetry

mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)

0.05 600 0.3513(12) 0.4332(19) 0.0738(8)

0.06 500 0.3994(15) 0.4888(14) 0.0840(7)

0.08 500 0.4875(9) 0.5965(10) 0.1017(6)

0.1 500 0.5670(7) 0.6927(14) 0.1167(3)

0.12 500 0.6460(7) 0.7899(22) 0.1328(4)

0.16 400 0.7877(6) 0.9549(14) 0.1586(5)

0.2 400 0.9193(6) 1.1049(22) 0.1821(6)

TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}

mf # trj. Mπ Mρ Fπ

0.05 600 0.3163(27) 0.3693(49) 0.0633(9)

0.06 600 0.3634(15) 0.4336(22) 0.0729(4)

0.08 600 0.4508(12) 0.5311(21) 0.0898(7)

0.1 600 0.5227(9) 0.6174(21) 0.1017(7)

0.12 600 0.5966(10) 0.7027(22) 0.1149(7)

0.16 500 0.7308(8) 0.8519(12) 0.1380(7)

0.2 500 0.8568(6) 0.9921(6) 0.1585(8)

TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}
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FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,
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Nf=8: an interpretation

• What’s observed:

• chiral symmetry spontaneously broken for mf→0

• hyperscaling for intermediate mf

• largish γ ~  0.6-1  for various observables

• can be interpreted as “walking”:

• probing energy scale with μ~mf → ladder SD picture

3

QCDf

α(µ)

µ

α*

mf mD Λm

FIG. 1. Schematic two-loop/ladder picture of the gauge coupling of the massless large Nf QCD as a walking gauge theory in
the SχSB phase near the conformal window. mD is the dynamical mass of the fermion generated by the SχSB. The effects of
the bare mass of the fermion mf would be qualitatively different depending on the cases: Case 1: mf ! mD (red dotted line)
well described by ChPT, and Case 2: mf " mD (blue dotted line) well described by the hyper scaling.

finite box L3 and lattice spacing a, which do not exist in the continuum theory we are interested in. Among others
the fermion bare mass mf obviously distorts the ideal behavior of the breaking of the scale symmetry in a way similar
to the continuum theory. Then, disregarding the effects of the lattice parameters L and a for the moment, we may
imagine possible effects of the fermion bare mass on the walking coupling of our target of study as in Fig. 1, which is
suggested by the two-loop/ladder analysis.
Case 1. mf ! mD ! ΛQCD (red dotted line in Fig. 1): The chiral perturbation theory should hold in a way similar
to the real-life QCD with light quarks.
Case 2. mD ! mf ! ΛQCD (blue dotted line in Fig. 1): The conformal hyperscaling relation should hold approxi-
mately with a large anomalous dimension γm " 1.
Actually, the SχSB order parameter to be measured on the lattice is not mD but would be the decay constant Fπ of
the Nambu-Goldstone boson π extrapolated to the chiral limit: F = Fπ(mf = 0) which would be expected roughly
the same as mD: mD = O(F ).
There is a caveat about the approximate hyperscaling relation to be expected in the Case 2 (mD ! mf ! ΛQCD ):

There are two infrared mass parameters mD and mf which violate the infrared conformality and hence the possible
hyperscaling relations for the physical mass quantities measured from the spectrum should not be universal but
do depend on both of them in non-universal ways, in sharp contrast to the hyperscaling relation in the conformal
window where all the mass parameters from the spectra reflects the deformation by the unique infrared scale-violating
parameter mf in a universal way. In particular, when mf is getting close to the region in Case 1, where π mass Mπ

and the other quantities such as ρ mass Mρ and Fπ behave qualitatively different towards the chiral limit: Mπ → 0
while the others remain non-zero.
To date, some groups carried out lattice studies on 8-flavors, with Wilson fermions [10, 11, 23] and with staggered

fermions [12, 15, 24, 25, 30–33]. The Refs. [10, 11, 23] concluded the Nf = 8 is in the conformal window, but Refs
[12, 15, 24, 25, 30, 31] concluded that the Nf = 8 resides on the chiral broken phase. Even if Nf = 8 is in the chiral
broken phase, it has not been investigated whether the behavior of this system is QCD like or the walking with the
large anomalous mass dimension.
In this paper we study the meson spectrum by simulating the Nf = 8 QCD, based on yet another lattice fermion,

Highly Improved Staggered Quark (HISQ) [34], applied to Nf = 8 for the first time. Preliminary reports were given
in Ref. [35]. HISQ action improves the behavior towards the continuum limit through the improvement of the flavor
symmetry. The salient feature of our collaboration is that we have been investigating Nf = 4, 8, 12, 16 on the setting
of HISQ action with the same systematics in order to study the Nf -dependence of the physics systematically [21, 35].
Thus our analyses for Nf = 8 are made in comparison with those for other flavors of our group.
We first show the data of the meson spectrum, Mπ and Fπ, as well as Mρ and the chiral condensate 〈ψ̄ψ〉 for

β(≡ 6/g2) = 3.8 on the L3 × T lattice with and L = 12 − 36 and T = 16 − 48, and mf = 0.015 − 0.16. We then
analyze the data based on the Chiral Perturbation Theory (ChPT) [36], particularly for small mf : mf = 0.015− 0.04
(corresponding to Case 1 in Fig. 1 in the above). We find that the ChPT analysis is self-consistent and find a result
consistent with non-zero value of F and Mρ and vanishing of Mπ in the chiral limit extrapolation based on the ChPT
(we also estimate the effects of the chiral logarithm). The chiral condensate is also non-zero value in the chiral limit
extrapolation, which neatly coincides with the Gell-Mann-Oakes-Renner (GMOR) relation obtained from the π data
in the chiral limit extrapolation.
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• chiral symmetry spontaneously broken for mf→0

• hyperscaling for intermediate mf

• largish γ ~  0.6-1  for various observables

• can be interpreted as “walking”:

• probing energy scale with μ~mf → ladder SD picture

• if nf=8 is close to conformal transition point nfc,  γ ~ γm
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FIG. 1. Schematic two-loop/ladder picture of the gauge coupling of the massless large Nf QCD as a walking gauge theory in
the SχSB phase near the conformal window. mD is the dynamical mass of the fermion generated by the SχSB. The effects of
the bare mass of the fermion mf would be qualitatively different depending on the cases: Case 1: mf ! mD (red dotted line)
well described by ChPT, and Case 2: mf " mD (blue dotted line) well described by the hyper scaling.

finite box L3 and lattice spacing a, which do not exist in the continuum theory we are interested in. Among others
the fermion bare mass mf obviously distorts the ideal behavior of the breaking of the scale symmetry in a way similar
to the continuum theory. Then, disregarding the effects of the lattice parameters L and a for the moment, we may
imagine possible effects of the fermion bare mass on the walking coupling of our target of study as in Fig. 1, which is
suggested by the two-loop/ladder analysis.
Case 1. mf ! mD ! ΛQCD (red dotted line in Fig. 1): The chiral perturbation theory should hold in a way similar
to the real-life QCD with light quarks.
Case 2. mD ! mf ! ΛQCD (blue dotted line in Fig. 1): The conformal hyperscaling relation should hold approxi-
mately with a large anomalous dimension γm " 1.
Actually, the SχSB order parameter to be measured on the lattice is not mD but would be the decay constant Fπ of
the Nambu-Goldstone boson π extrapolated to the chiral limit: F = Fπ(mf = 0) which would be expected roughly
the same as mD: mD = O(F ).
There is a caveat about the approximate hyperscaling relation to be expected in the Case 2 (mD ! mf ! ΛQCD ):

There are two infrared mass parameters mD and mf which violate the infrared conformality and hence the possible
hyperscaling relations for the physical mass quantities measured from the spectrum should not be universal but
do depend on both of them in non-universal ways, in sharp contrast to the hyperscaling relation in the conformal
window where all the mass parameters from the spectra reflects the deformation by the unique infrared scale-violating
parameter mf in a universal way. In particular, when mf is getting close to the region in Case 1, where π mass Mπ

and the other quantities such as ρ mass Mρ and Fπ behave qualitatively different towards the chiral limit: Mπ → 0
while the others remain non-zero.
To date, some groups carried out lattice studies on 8-flavors, with Wilson fermions [10, 11, 23] and with staggered

fermions [12, 15, 24, 25, 30–33]. The Refs. [10, 11, 23] concluded the Nf = 8 is in the conformal window, but Refs
[12, 15, 24, 25, 30, 31] concluded that the Nf = 8 resides on the chiral broken phase. Even if Nf = 8 is in the chiral
broken phase, it has not been investigated whether the behavior of this system is QCD like or the walking with the
large anomalous mass dimension.
In this paper we study the meson spectrum by simulating the Nf = 8 QCD, based on yet another lattice fermion,

Highly Improved Staggered Quark (HISQ) [34], applied to Nf = 8 for the first time. Preliminary reports were given
in Ref. [35]. HISQ action improves the behavior towards the continuum limit through the improvement of the flavor
symmetry. The salient feature of our collaboration is that we have been investigating Nf = 4, 8, 12, 16 on the setting
of HISQ action with the same systematics in order to study the Nf -dependence of the physics systematically [21, 35].
Thus our analyses for Nf = 8 are made in comparison with those for other flavors of our group.
We first show the data of the meson spectrum, Mπ and Fπ, as well as Mρ and the chiral condensate 〈ψ̄ψ〉 for

β(≡ 6/g2) = 3.8 on the L3 × T lattice with and L = 12 − 36 and T = 16 − 48, and mf = 0.015 − 0.16. We then
analyze the data based on the Chiral Perturbation Theory (ChPT) [36], particularly for small mf : mf = 0.015− 0.04
(corresponding to Case 1 in Fig. 1 in the above). We find that the ChPT analysis is self-consistent and find a result
consistent with non-zero value of F and Mρ and vanishing of Mπ in the chiral limit extrapolation based on the ChPT
(we also estimate the effects of the chiral logarithm). The chiral condensate is also non-zero value in the chiral limit
extrapolation, which neatly coincides with the Gell-Mann-Oakes-Renner (GMOR) relation obtained from the π data
in the chiral limit extrapolation.
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• largish γ ~  0.6-1  for various observables

• can be interpreted as “walking”:
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FIG. 1. Schematic two-loop/ladder picture of the gauge coupling of the massless large Nf QCD as a walking gauge theory in
the SχSB phase near the conformal window. mD is the dynamical mass of the fermion generated by the SχSB. The effects of
the bare mass of the fermion mf would be qualitatively different depending on the cases: Case 1: mf ! mD (red dotted line)
well described by ChPT, and Case 2: mf " mD (blue dotted line) well described by the hyper scaling.

finite box L3 and lattice spacing a, which do not exist in the continuum theory we are interested in. Among others
the fermion bare mass mf obviously distorts the ideal behavior of the breaking of the scale symmetry in a way similar
to the continuum theory. Then, disregarding the effects of the lattice parameters L and a for the moment, we may
imagine possible effects of the fermion bare mass on the walking coupling of our target of study as in Fig. 1, which is
suggested by the two-loop/ladder analysis.
Case 1. mf ! mD ! ΛQCD (red dotted line in Fig. 1): The chiral perturbation theory should hold in a way similar
to the real-life QCD with light quarks.
Case 2. mD ! mf ! ΛQCD (blue dotted line in Fig. 1): The conformal hyperscaling relation should hold approxi-
mately with a large anomalous dimension γm " 1.
Actually, the SχSB order parameter to be measured on the lattice is not mD but would be the decay constant Fπ of
the Nambu-Goldstone boson π extrapolated to the chiral limit: F = Fπ(mf = 0) which would be expected roughly
the same as mD: mD = O(F ).
There is a caveat about the approximate hyperscaling relation to be expected in the Case 2 (mD ! mf ! ΛQCD ):

There are two infrared mass parameters mD and mf which violate the infrared conformality and hence the possible
hyperscaling relations for the physical mass quantities measured from the spectrum should not be universal but
do depend on both of them in non-universal ways, in sharp contrast to the hyperscaling relation in the conformal
window where all the mass parameters from the spectra reflects the deformation by the unique infrared scale-violating
parameter mf in a universal way. In particular, when mf is getting close to the region in Case 1, where π mass Mπ

and the other quantities such as ρ mass Mρ and Fπ behave qualitatively different towards the chiral limit: Mπ → 0
while the others remain non-zero.
To date, some groups carried out lattice studies on 8-flavors, with Wilson fermions [10, 11, 23] and with staggered

fermions [12, 15, 24, 25, 30–33]. The Refs. [10, 11, 23] concluded the Nf = 8 is in the conformal window, but Refs
[12, 15, 24, 25, 30, 31] concluded that the Nf = 8 resides on the chiral broken phase. Even if Nf = 8 is in the chiral
broken phase, it has not been investigated whether the behavior of this system is QCD like or the walking with the
large anomalous mass dimension.
In this paper we study the meson spectrum by simulating the Nf = 8 QCD, based on yet another lattice fermion,

Highly Improved Staggered Quark (HISQ) [34], applied to Nf = 8 for the first time. Preliminary reports were given
in Ref. [35]. HISQ action improves the behavior towards the continuum limit through the improvement of the flavor
symmetry. The salient feature of our collaboration is that we have been investigating Nf = 4, 8, 12, 16 on the setting
of HISQ action with the same systematics in order to study the Nf -dependence of the physics systematically [21, 35].
Thus our analyses for Nf = 8 are made in comparison with those for other flavors of our group.
We first show the data of the meson spectrum, Mπ and Fπ, as well as Mρ and the chiral condensate 〈ψ̄ψ〉 for

β(≡ 6/g2) = 3.8 on the L3 × T lattice with and L = 12 − 36 and T = 16 − 48, and mf = 0.015 − 0.16. We then
analyze the data based on the Chiral Perturbation Theory (ChPT) [36], particularly for small mf : mf = 0.015− 0.04
(corresponding to Case 1 in Fig. 1 in the above). We find that the ChPT analysis is self-consistent and find a result
consistent with non-zero value of F and Mρ and vanishing of Mπ in the chiral limit extrapolation based on the ChPT
(we also estimate the effects of the chiral logarithm). The chiral condensate is also non-zero value in the chiral limit
extrapolation, which neatly coincides with the Gell-Mann-Oakes-Renner (GMOR) relation obtained from the π data
in the chiral limit extrapolation.



Nf=8: an interpretation

• What’s observed:

• chiral symmetry spontaneously broken for mf→0

• hyperscaling for intermediate mf

• largish γ ~  0.6-1  for various observables

• can be interpreted as “walking”:

• probing energy scale with μ~mf → ladder SD picture

• if nf=8 is close to conformal transition point nfc,  γ ~ γm

• Next question

• spectrum ?
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FIG. 1. Schematic two-loop/ladder picture of the gauge coupling of the massless large Nf QCD as a walking gauge theory in
the SχSB phase near the conformal window. mD is the dynamical mass of the fermion generated by the SχSB. The effects of
the bare mass of the fermion mf would be qualitatively different depending on the cases: Case 1: mf ! mD (red dotted line)
well described by ChPT, and Case 2: mf " mD (blue dotted line) well described by the hyper scaling.
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to the continuum theory. Then, disregarding the effects of the lattice parameters L and a for the moment, we may
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[12, 15, 24, 25, 30, 31] concluded that the Nf = 8 resides on the chiral broken phase. Even if Nf = 8 is in the chiral
broken phase, it has not been investigated whether the behavior of this system is QCD like or the walking with the
large anomalous mass dimension.
In this paper we study the meson spectrum by simulating the Nf = 8 QCD, based on yet another lattice fermion,

Highly Improved Staggered Quark (HISQ) [34], applied to Nf = 8 for the first time. Preliminary reports were given
in Ref. [35]. HISQ action improves the behavior towards the continuum limit through the improvement of the flavor
symmetry. The salient feature of our collaboration is that we have been investigating Nf = 4, 8, 12, 16 on the setting
of HISQ action with the same systematics in order to study the Nf -dependence of the physics systematically [21, 35].
Thus our analyses for Nf = 8 are made in comparison with those for other flavors of our group.
We first show the data of the meson spectrum, Mπ and Fπ, as well as Mρ and the chiral condensate 〈ψ̄ψ〉 for

β(≡ 6/g2) = 3.8 on the L3 × T lattice with and L = 12 − 36 and T = 16 − 48, and mf = 0.015 − 0.16. We then
analyze the data based on the Chiral Perturbation Theory (ChPT) [36], particularly for small mf : mf = 0.015− 0.04
(corresponding to Case 1 in Fig. 1 in the above). We find that the ChPT analysis is self-consistent and find a result
consistent with non-zero value of F and Mρ and vanishing of Mπ in the chiral limit extrapolation based on the ChPT
(we also estimate the effects of the chiral logarithm). The chiral condensate is also non-zero value in the chiral limit
extrapolation, which neatly coincides with the Gell-Mann-Oakes-Renner (GMOR) relation obtained from the π data
in the chiral limit extrapolation.



Nf=8 spectrum

• with input Fπ = 246 /√N GeV   (N: # weak doublet in techni-sector)

• prediction:                                                  (with only technicolor dynamics) 

• for example:                                           for one family model: N=4

• Higgs mass ?

• 0++:  one of the difficult quantities on the lattice

• multi-faceted nature of Nf=8 adds another difficulty: delicate chiral extrapl.

➡ first analyze simpler Nf=12,  which shares “conformality” → techni dilaton

➡Is 0++ state light in (mass deformed) Nf=12 theory 

M⇢/F⇡ = 7.7(1.5)(+3.8
�0.4)

M⇢ = 970(+515
�195) GeV



0++ state for Nf=12: fermion bilinear operator

• technique developed staggered fermions in QCD for disconnected diagrams

• use of Ward-Takahashi identity  (Kilcup-Sharpe, NPB(1987)493)

• large reduction of noise than simple application of stochastic method

• ~10 times efficient in computation effort

• already applied to

• real QCD: Nf=2+1: Gregory et al,  η’

• Nf=12:  Jin & Mawhinney,   0++ at bulk transition boundary

• high statistics

• ~10k configurations



Effective mass in Nf = 12 (mf = 0.06,243×32 with Nconf = 14000,

Preliminary)

meff(t) = log(CH(t)/CH(t+1)) t"1−−−→ mH
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0++ state for Nf=12: through glueball operator

• technique developed in QCD

• optimization of the operator (Lucini, Rago, Rinaldi, JHEP08(2010)119)

• multi-shapes

• multi-level smearing 

• variational analysis

• for the first time applied to many flavor system

• high statistics

• ~10k configurations



Comparison of effective mass in Nf = 12
(mf = 0.06, 183 × 24 with Nconf = 5000, 243 × 32 with Nconf = 14000, Preliminary)

meff(t) = log(CH(t)/CH(t+1)) t"1−−−→ mH

Glueball correlator and meson D(t)

Results: comparison with gluonic observables Preliminary
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mf dependence in Nf = 12 (Preliminary)

mσ from effective mass of D(t) at t = 5
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mf dependence in Nf = 12 (Preliminary)

mσ from effective mass of D(t) at t = 5
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Nf=12, 0++:  summary of PRELIMINARY results

• consistent mass observed for both glueball and fermion bilinear operators

• σ  is  light!    :   lighter than pion

• promising indication for walking theory realized in near Nf: cf,  Nf=8

• σ mass   more of less consistent with conformal hyperscaling

• to be tested with higher statistics and careful analysis...

• what about Nf=8 ?

• we have a PRELIMINARY result at one mf point 



0 2 4 6 8 10 12 14
t

0

0.2

0.4

0.6

0.8

1

1.2 Connected only
Disconnected only
Scalar (full)

Effective mass plot

NC = 3, Nf = 8, � = 3.8, mf = 0.06, V = 243 ⇥ 32

M⇡

indicating    σ as light as π

arXiv:1302.6859[hep-lat]
LatKMI Collaboration

(F⇡ ⇠ 0.1)



Summary and Outlook

• SU(3) gauge theory with Nf fundamental fermions is studied with HISQ

• summary

• Nf=12  [LatKMI PRD86(2012)054506]

• consistent with conformal   with small γm

• Nf=8    [LatKMI arXiv:1302.6859]

• spontaneous chiral symmetry breaking

• conformal scaling @ intermediate mass  indicating largish γm

• candidate of walking technicolor theory

➡ needs further check at smaller mf
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• prediction:                                                  (with only technicolor dynamics) 
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• SU(3) gauge theory with Nf fundamental fermions is studied with HISQ
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• conformal scaling @ intermediate mass  indicating largish γm

• candidate of walking technicolor theory
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Summary and Outlook

• summary of PRELIMINARY results

• Nf=12

• successfully extracted light 0++ state:  lighter than pion

• consistency checked :  glueball operator ⇔ fermion bilinear

➡ to be tested with higher statistics and careful analysis

• Nf=8

• light 0++ state observed for one mf:  as light as pion

• interesting candidate of WTC with light Higgs

➡ needs further in-depth study
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