Exploring for the walking technicolor on the lattice

Yasumichi Aoki [Kobayashi-Maskawa Institute(KMI), Nagoya University]

for the LatKMI collaboration

- Brookhaven Forum 2013 -

May. 2, 2013

LatKMI collaboration

Walking Technicolor (WTC)

- a candidate of the new physics beyond the Standard Model of particles
- could replace Higgs sector of the Standard Model
 - Higgs sector is a low energy effective theory of WTC
- free from the gauge hierarchy problem (naturalness)
- gives explanation of the electro-weak gauge symmetry breaking,
 - thus origin of mass of the elementary particles
- "Higgs" = pseudo Nambu-Goldstone boson
 - due to breaking of the approximate scale invariance
 - Techni Dilaton (Yamawaki, Bando, Matsumoto)

Requirements for the successful WTC theory

- spontaneous chiral symmetry breaking
- running coupling "walks" = slowly changing with $\mu \rightarrow$ nearly conformal
- large mass anomalous dimension: $\gamma_m{\sim}1$
- light scalar 0^{++} (m_H = 126 GeV @ LHC !)
 - with input $F_{\pi} = 246 / \sqrt{N \text{ GeV}}$ (N: # weak doublet in techni-sector)
 - to reproduce W^{\pm} mass
 - typical QCD like theory: $M_{Had} >> F_{\pi}$ (ex.: QCD: $m_{\rho}/f_{\pi} \sim 8$)
 - Naive TC: $M_{Had} \approx 1,000 \text{ GeV}$
 - 0⁺⁺ is a special case: pseudo Nambu-Goldstone boson of scale inv.
 - ⇒ is it really so ?

• Walking Techinicolor could be realized just below the conformal window

- Walking Techinicolor could be realized just below the conformal window
- crucial information: N_f^{crit} and...

• Walking Techinicolor could be realized just below the conformal window

- crucial information: N_f^{crit} and...
- mass anomalous dimension γ & the composite mass spectrum around N_f^{crit}

models being studied:

- SU(3)
 - fundamental: Nf=6, 8, 10, 12, 16
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram $\gamma = 2$ $\gamma = 1$ Fund Ladder Ryttov & Sannino 07 Dietrich & Sannino 07 Sannino & Tuominen 04

18

models being studied:

- SU(3)
 - fundamental: Nf=6,(8,)10,(12),(16)
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram

models being studied:

- SU(3)
 - fundamental: Nf=6 8,10,12 16
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram

Simulation

- Fermion Formulation: HISQ (Highly Improved Staggered Quarks)
 - being used for state-of-the-art QCD calculations / MILC,...
- Gauge Field Formulation:tree level Symanzik gauge
- $N_f=4: \beta=6/g^2=3.7$, $V=L^3xT: L/T=2/3; L=12, 16$
- N_f=8: β =6/g²=3.8, V=L³xT: L/T=3/4; L=18, 24, 30, 36
- N_f=12 (two lattice spacings): [LatKMI collab. PRD86 (2012) 054506]
 - $\beta = 6/g^2 = 3.7$, V=L³xT: L/T=3/4; L=18, 24, 30, 0.04 $\leq m_f \leq 0.2$
 - $\beta = 6/g^2 = 4.0$, $V = L^3 xT$: L/T=3/4; L=18, 24, 30, $0.05 \le m_f \le 0.24$

• using MILC code v7, with modification: HMC and speed up in MD

staggered flavor symmetry for $N_f=12$ HISQ

· comparing masses with different staggered operators f

• excellent staggered flavor symmetry, that

Hadron spectrum: response to mass (m_f) deformation

- IR conformal phase:
 - coupling runs for $\mu < m_f$: like $n_f=0$ QCD with $\Lambda_{QCD} \sim m_f$
 - multi particle state : $M_H \propto m_f^{1/(1+\gamma_m^*)}$; $F_\pi \propto m_f^{1/(1+\gamma_m^*)}$ (criticality @ IRFP)

- S χ SB phase:
 - ChPT
 - at leading: $M_{\pi^2} \propto m_f$, ; $F_{\pi} = F + c m_f$

a crude study using ratios

- conformal scenario:
 - $M_H \propto m_f^{1/(1+\gamma_m^*)}$; $F_\pi \propto m_f^{1/(1+\gamma_m^*)}$ for small m_f
 - ★ F_{π}/M_{π} → const. for small m_{f}
 - ★ M_{ρ}/M_{π} → const. for small m_{f}

 $N_f = 12$

 $N_f = 12$

small mass region: flat ⇔ hyperscaling ⇔ consistent with conformal scenario

a crude study using ratios

- conformal scenario:
 - $M_H \propto m_f^{1/(1+\gamma_m^*)}$; $F_\pi \propto m_f^{1/(1+\gamma_m^*)}$ for small m_f
 - ★ F_{π}/M_{π} → const. for small m_{f}
 - ★ M_{ρ}/M_{π} → const. for small m_{f}
- chiral symmetry breaking scenario:
 - $M_{\pi^2} \propto m_f$, ; $F_{\pi} = F + c' M_{\pi^2}$ for small m_f
 - ★ $F_{\pi}/M_{\pi} \rightarrow \infty$ for $m_f \rightarrow 0$

• tends to diverge towards the chiral limit ($M_{\pi} \rightarrow 0$)

- tends to diverge towards the chiral limit ($M_{\pi} \rightarrow 0$)
- spontaneous chiral symmetry breaking

 f_{π}/M_{π}

• tends to diverge towards the chiral limit ($M_{\pi} \rightarrow 0$)

- tends to diverge towards the chiral limit ($M_{\pi} \rightarrow 0$)
- spontaneous chiral symmetry breaking, likely

a crude analysis: F_{π}/M_{π} vs M_{π} leads to a likely scenario

Detailed analysis of F_{π} vs m_f

 $N_f=12$

 $N_f=4$

- What's observed:
 - chiral symmetry spontaneously broken for $m_f \rightarrow 0$
 - hyperscaling for intermediate m_f
 - largish $\gamma \sim 0.6-1$ for various observables

- What's observed:
 - chiral symmetry spontaneously broken for $m_f \rightarrow 0$
 - hyperscaling for intermediate m_f
 - largish $\gamma \sim 0.6-1$ for various observables
- can be interpreted as "walking":

- What's observed:
 - chiral symmetry spontaneously broken for $m_f \rightarrow 0$
 - hyperscaling for intermediate m_f
 - largish $\gamma \sim~0.6\text{--}1\,$ for various observables
- can be interpreted as "walking":
 - probing energy scale with $\mu \sim m_f \rightarrow$ ladder SD picture

- What's observed:
 - chiral symmetry spontaneously broken for $m_f \rightarrow 0$
 - hyperscaling for intermediate m_f
 - largish $\gamma \sim 0.6-1$ for various observables
- can be interpreted as "walking":
 - probing energy scale with $\mu \sim m_f \rightarrow$ ladder SD picture
 - if $n_f=8$ is close to conformal transition point n_f^c , $\gamma \sim \gamma_m$

- What's observed:
 - chiral symmetry spontaneously broken for $m_f \rightarrow 0$
 - hyperscaling for intermediate m_f
 - largish $\gamma \sim 0.6-1$ for various observables
- can be interpreted as "walking":
 - probing energy scale with $\mu \sim m_f \rightarrow$ ladder SD picture
 - if $n_f{=}8$ is close to conformal transition point $n_f{^c},~\gamma\sim\gamma_m$
- Next question

- What's observed:
 - chiral symmetry spontaneously broken for $m_f \rightarrow 0$
 - hyperscaling for intermediate m_f
 - largish $\gamma \sim 0.6-1$ for various observables
- can be interpreted as "walking":
 - probing energy scale with $\mu \sim m_f \rightarrow$ ladder SD picture
 - if $n_f{=}8$ is close to conformal transition point $n_f{^c},~\gamma\sim\gamma_m$
- Next question
 - spectrum ?

N_f=8 spectrum

- with input $F_{\pi} = 246 / \sqrt{N \text{ GeV}}$ (N: # weak doublet in techni-sector)
- prediction: $M_{\rho}/F_{\pi} = 7.7(1.5) \binom{+3.8}{-0.4}$ (with only technicolor dynamics)
 - for example: $M_{\rho} = 970(^{+515}_{-195})$ GeV for one family model: N=4
- Higgs mass ?
 - 0++: one of the difficult quantities on the lattice
 - multi-faceted nature of N_f=8 adds another difficulty: delicate chiral extrapl.
 - → first analyze simpler N_f=12, which shares "conformality" → techni dilaton

➡Is 0++ state light in (mass deformed) N_f=12 theory

0++ state for $N_f=12$: fermion bilinear operator

- technique developed staggered fermions in QCD for disconnected diagrams
 - use of Ward-Takahashi identity (Kilcup-Sharpe, NPB(1987)493)
 - large reduction of noise than simple application of stochastic method
 - ~10 times efficient in computation effort
 - already applied to
 - real QCD: $N_f=2+1$: Gregory et al, η'
 - N_f=12: Jin & Mawhinney, 0++ at bulk transition boundary
- high statistics
 - ~10k configurations

Effective mass in $N_f = 12$ ($m_f = 0.06, 24^3 \times 32$ with $N_{conf} = 14000$, Preliminary)

$$m_{\text{eff}}(t) = \log(C_H(t)/C_H(t+1)) \xrightarrow{t \gg 1} m_H$$

 $X_{+}(2t) = 2X(2t) + X(2t+1) + X(2t-1)$

Good signal of m_{σ} from D(t)

0++ state for $N_f=12$: through glueball operator

- technique developed in QCD
 - optimization of the operator (Lucini, Rago, Rinaldi, JHEP08(2010)119)
 - multi-shapes
 - multi-level smearing
 - variational analysis
 - for the first time applied to many flavor system
- high statistics
 - ~10k configurations

Larger error in glueball correlator Reasonably consistent in large t

→ will show only fermion bi-linear results

Tuesday, 19 March 13

m_f dependence in $N_f = 12$ (Preliminary)

 m_{σ} from effective mass of D(t) at t = 5

Flavor-singlet scalar is relatively light? Lighter than π

Hyperscaling is seen as in m_{π} ?

$$m_f$$
 dependence in $N_f = 12$ (Preliminary)

 m_{σ} from effective mass of D(t) at t = 5

Flavor-singlet scalar is relatively light? Lighter than π

Hyperscaling is seen as in m_{π} ? $m_{\sigma} = C m_f^{1/(1+\gamma)}$ with $\gamma = 0.414$ from hyperscaling of m_{π}

N_f=12, 0++: summary of PRELIMINARY results

- consistent mass observed for both glueball and fermion bilinear operators
- σ is light! : lighter than pion
 - promising indication for walking theory realized in near Nf: cf, $N_f=8$
- σ mass more of less consistent with conformal hyperscaling
- to be tested with higher statistics and careful analysis...

- what about N_f=8 ?
 - we have a PRELIMINARY result at one mf point

$$N_C = 3, N_f = 8, \beta = 3.8, m_f = 0.06, V = 24^3 \times 32$$

Effective mass plot

indicating σ as light as π

- SU(3) gauge theory with N_f fundamental fermions is studied with HISQ
- summary
 - Nf=12 [LatKMI PRD86(2012)054506]
 - consistent with conformal with small γ_m
 - Nf=8 [LatKMI arXiv:1302.6859]
 - spontaneous chiral symmetry breaking
 - conformal scaling @ intermediate mass indicating largish γ_m
 - candidate of walking technicolor theory
 - needs further check at smaller m_f

- SU(3) gauge theory with $N_{\rm f}$ fundamental fermions is studied with HISQ
- summary
 - Nf=12 [LatKMI PRD86(2012)054506]
 - consistent with conformal with small γ_{m}
 - Nf=8 [LatKMI arXiv:1302.6859]
 - spontaneous chiral symmetry breaking

• prediction: $M_{\rho}/F_{\pi} = 7.7(1.5)(^{+3.8}_{-0.4})$ (with only technicolor dynamics)

• for example: $M_{\rho} = 970 \binom{+515}{-195}$ GeV for one family model: N=4

needs further check at smaller m_f

- SU(3) gauge theory with N_f fundamental fermions is studied with HISQ
- summary
 - Nf=12 [LatKMI PRD86(2012)054506]
 - consistent with conformal with small γ_m
 - Nf=8 [LatKMI arXiv:1302.6859]
 - spontaneous chiral symmetry breaking
 - conformal scaling @ intermediate mass indicating largish γ_m
 - candidate of walking technicolor theory
 - needs further check at smaller m_f

- summary of PRELIMINARY results
 - Nf=12
 - successfully extracted light 0++ state: lighter than pion
 - consistency checked : glueball operator ⇔ fermion bilinear
 - to be tested with higher statistics and careful analysis
 - Nf=8
 - light 0++ state observed for one mf: as light as pion
 - interesting candidate of WTC with light Higgs
 - needs further in-depth study

Thank you for your attention