Rare Decays

Cédric Potterat on behalf of the LHCb collaboration

Brookhaven Forum 2013

May 02, 2013

Rare decays

- ▶ fundamental tools for indirect searches of new physics
- ▶ Indirectly probing higher energy scales than directly accessible
- \star FCNC, $\Delta F=1,$ are forbidden at tree level in the SM.
 - proceed via loop diagrams.
 - In extensions to the SM these processes can receive contributions from "new" virtual particles.

 \star Suppressed or forbidden in SM \rightarrow sensitive to NP effects

- ► Large $b\bar{b}$ cross section $\sigma(pp \rightarrow b\bar{b}X)$ @ 7TeV = $284 \pm 53\mu b$ [LHCb, PLB 694 209]
- ▶ Large acceptance for b hadron decays
- \blacktriangleright Efficient and flexible trigger (particularly μ trigger for analyses presented here)
- \blacktriangleright good particle ID, tracking and reconstruction

Rare B decays

- $\blacktriangleright B^0_{(s)} \to \mu^+ \mu^-$
- $B^0_{(s)} \to \mu^+ \mu^- \mu^+ \mu^-$

Semileptonic $b \to s l^+ l^-$ decays

- $\blacktriangleright \ B^0 \to K^* \mu^+ \mu^-$
- $\blacktriangleright \ B^0 \to K^* e^+ \, e^-$
- $\blacktriangleright \ {\rm K}^0_S \to \mu^+ \mu^-$

- ▶ $B^0 \rightarrow \mu \mu$ and $B_s^0 \rightarrow \mu \mu$ are GIM and helicity suppressed in the SM
- ► Standard Model BR predictions have a very good accuracy. [A. Buras et al. arXiv:1303.3820]: $BR(B^0 \to \mu\mu) = (1.07 \pm 0.10) \times 10^{-10}$, [De Bruyn et al. [PRL 109, 041801]]: $BR(B_s^0 \to \mu\mu) = (3.54 \pm 0.30) \times 10^{-9}$
- ► $B^0 \rightarrow \mu\mu$ and $B_s^0 \rightarrow \mu\mu$ are sensitive to possible NP contributions \Rightarrow probe of NP models with extended Higgs sectors.

e.g. in MSSM, branching fraction scales $\approx \tan^6\beta/M_A^4$

▶ Today: updated search including: 1fb^{-1} at 7TeV and 1.1fb^{-1} at 8TeV

$B^0_{(s)} \to \mu^+ \mu^-$: Analysis strategy

PRL110, 021801 (2013)

Selection

- ▶ Pairs of opposite muons.
- Displaced Vertex
- $4.9 < m_{\mu\mu} < 6.0 \, \text{GeV/c}^2$
- p_T , IP and quality cuts
- ► BDT vs $m_{\mu\mu}$: Search in a 2D plane

Control channels

 $B^0_{(s)} \to hh$: mass peak position $X \to \mu\mu$: mass peak resolution • $\sigma_{R^0} = (24.6 \pm 0.4) \text{ MeV/c}^2$

• $\sigma_{B_c^0} = (25.0 \pm 0.4) \text{ MeV/c}^2$

PRL110, 021801 (2013)

 $B^0_{(a)} \rightarrow \mu^+ \mu^-$: Normalization

▶ Two channels are averaged for normalization (compatible)

▶ Number of observed events is translated to BR

$$BR(B_{(s)}^{0} \to \mu^{+}\mu^{-}) = BR_{norm} \times \underbrace{\begin{pmatrix} \epsilon_{norm}^{rec} \epsilon_{norm}^{sel} \\ \epsilon_{sig}^{rec} \epsilon_{sig}^{sel} \\ \epsilon_{sig}^{rec} \\$$

$B^0_{(s)} \to \mu^+ \mu^-$: updated results

PRL110, 021801 (2013)

- ▶ Using 1fb⁻¹ at $\sqrt{s} = 7$ TeV and 1.1fb⁻¹ at $\sqrt{s} = 8$ TeV of data, LHCb finds the first evidence of $B_s \rightarrow \mu^+ \mu^-$ decay.
- \blacktriangleright Signal incompatible with the background-only hypothesis at 3.5σ

 $BR(B_s^0 \to \mu^+ \mu^-) = (3.2^{+1.4}_{-1.2} (\text{stat})^{+0.5}_{-0.3} (\text{syst})) \times 10^{-9}$

▶ No significant evidence is found for the $B^0 \to \mu^+ \mu^-$ decay.

$$BR(B^0\to\mu^+\mu^-) < 9.4\times 10^{-10} @~95\,\%$$
 CL

arXiv:1303.1092

 $\rightarrow \mu^+ \mu^- \mu^+ \mu^-$

 B^0

- ► Resonant $B_s^0 \to J/\psi(\to \mu\mu)\phi(\to \mu\mu)$, with a $BR = (2.4 \pm 0.9) \times 10^{-8}$, excluded in the analysis
- ► Non-resonant $B^0_{(s)} \rightarrow \mu\mu\gamma(\rightarrow\mu\mu)$, with $BR < 10^{-10}$ [PRD 70 (2004) 114028]
- ▶ In NP models, scalar and pseudoscalar particles enhance the BR via $B \rightarrow PS$
- Particular sensitivity to sgoldstino-mediated decays in the MSSM

arXiv:1303.1092

- 4 muons with high IP_{χ^2} , good vertex and tight PID cuts $(\epsilon_{\mu} = 78.5\%, \epsilon_{\pi \to \mu} = 1.4\%)$
- ▶ Resonant $B_s^0 \to J/\psi(\to \mu\mu)\phi(\to \mu\mu)$: removed and used as control channel for the selection.
- ▶ Only considered combinatorial background (peaking negligible)
- ▶ Normalization channel: $B^0 \to J/\psi(\to \mu\mu)K^*(\to K\pi)$ same selection except the PIDs

$$BR(B^{0}_{(s)} \to 4\mu) = BR(B^{0} \to J/\psi K^{*}) \times \kappa$$

$$\times \underbrace{\left(\frac{\epsilon_{B^{0} \to J/\psi K^{*}}}{\epsilon_{B^{0}_{(s)} \to 4\mu}}\right)}_{(s) \to 4\mu} \times \underbrace{\left(\frac{f_{d}}{f_{d(s)}}\right)}_{N_{B^{0} \to J/\psi K^{*}}} \times \kappa$$

 \mathbf{MC}

 $\kappa :$ correction for the S-wave exclusion $f_d/f_s=0.256\pm 0.020,$ from LHCb (PRD 85 (2012) 032008)

 $\underline{B}^0_{(a)} \rightarrow \overline{\mu^+ \mu^- \mu^+ \mu^-}$: strategy

arXiv:1303.1092

- \blacktriangleright Analysis on $1 {\rm fb}^{-1}$ of 2011 data.
- Upper limits at 90% (95%) CL

$$BR(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 1.2(1.6) \times 10^{-8}$$

$$BR(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 5.3(6.6) \times 10^{-9}$$

► Upper limits at 90 % (95 %) CL in MSSM models $(m_P = 214.3 \text{ MeV/c}^2, m_S = 2.5 \text{ GeV/c}^2)$

$$\begin{array}{c} BR(B^0_s \to SP \to 4\mu) < 1.2(1.6) \times 10^{-8} \\ \\ BR(B^0 \to SP \to 4\mu) < 5.1(6.3) \times 10^{-9} \end{array}$$

 $B_{\ell a}^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$: result

arXiv:1304.6325, PRL110, 031801 (2013)

 $B^0 \rightarrow K^{*0} \mu$

Many interesting observables which allow to constrain NP

- Angular distribution, described by 3 angles $(\theta_l, \theta_K \text{ and } \phi)$ and q^2
- ▶ A_{FB} zero-crossing point, largely free from form-factor uncertainties
- ▶ Differential BR, which suffers from larger hadronic uncertainties
- ▶ CP asymmetry, predicted to be $O(10^{-3})$ in the SM but could be enhanced in NP models (see JHEP 01 (2009) 019, JHEP 11 (2011) 122)

Analysis strategy for 2011 data (1fb^{-1})

- All observables measured in bins of q^2
- ► Due to limited statistic, use $\hat{\phi} = \phi + \pi$ if $\phi < 0$, otherwise $\hat{\phi} = \phi$ to obtain simplified angular expression (4 observables: A_{FB} , F_L , S_3 and A_9)
- ► Use $B^0 \rightarrow J/\psi K^*$ for normalization in BR measurement and for correction of production and detection asymmetries in A_{CP}

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ differential BR arXiv:1304.6325, PRL110, 031801 (2013)

▶ Sensitivity to NP limited by hadronic uncertainties

▶ Most precise measurement to date, consistent with SM

$B^0 \to K^{*0} \mu^+ \mu^-$ angular obs

arXiv:1304.6325, PRL110, 031801 (2013)

▶ Most precise measurement to date, consistent with SM

Brookhaven Forum 2013 | CP | RD@LHCb

$B^0 \rightarrow K^{*0} \mu^+ \mu^$ arXiv:1304.6325, PRL110, 031801 (2013)

- Average over magnet polarities to cancel left-right asymmetry
- A_{CP} integrated over the full q^2

 $A_{CP} = -0.072 \pm 0.040 (\text{stat}) \pm 0.005 (\text{syst})$

- A_{CP} binned in q^2 consistent with the SM within 1.8σ
- ▶ Most precise measurement to date

CP

Comparison with $B^0 \to K^{(*)0} \mu^+ \mu^-$

- ▶ Low dilepton mass $(=q^2)$ has higher sensitivity to photon polarization
- Complementary due to more sensitivity to C'_7 than C'_9
- ▶ Easier theoretical formalism due to negligible lepton mass
- ▶ Worst resolution due to sizeable brem β trahlung effects

Study differential BR in $30 < m_{ee} < 1000 \text{ MeV/c}^2$

- \blacktriangleright Avoid huge contamination from $B^0 \to K^* \gamma$
- ▶ Below 30 MeV/c^2 angles are hard to measure due to multiple scattering

Next step angular analysis.

 $B^0 \rightarrow \overline{K^{*0}e^+e^-}$: results arXiv:1304.3035

► Analysis on 1fb^{-1} of 2011 data. Observation of the signal decay with 4.6σ significance.

▶ Systematic uncertainties below statistical ones

• Measurement of BR at low q^2

$$BR(B^0 \to K^{*0}e^+e^-)^{30-1000 \text{ MeV/c}^2} = (3.1^{+0.9}_{-0.8} {}^{+0.2}_{-0.3} \pm 0.2) \times 10^{-7}$$

- ► In SM: $BR(K_S^0 \to \mu\mu) = (5.0 \pm 1.5) \times 10^{-12}$
- ▶ $10^{13} K_S^0$ per fb⁻¹ @ LHCb
- ► background: μ from interations with the VELO (Vertex Locator) and doubled misidentified $K_S^0 \rightarrow \pi\pi$.
- Candidates classified in bins of BDT, compared to signal and background expectation
- $K_S^0 \to \pi\pi$ used to train the BDT and also as normalization sample
- Thirty times better than previous measurement!

• First evidence (3.5σ) of $B_s^0 \to \mu^+\mu^-$

 $BR(B_s^0 \to \mu^+ \mu^-) = (3.2^{+1.4}_{-1.2} (\text{stat})^{+0.5}_{-0.3} (\text{syst})) \times 10^{-9}$

- Upper Limits on: $B^0 \rightarrow \mu^+ \mu^-,$ $B^0_s \rightarrow \mu^+ \mu^- \mu^+ \mu^-, B^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-,$ $K^0_S \rightarrow \mu^+ \mu^-$
- (Differential) BR in the $B^0 \to K^* l^+ l^-$ analyses Angular analyses consistent with SM First measurement of A_{FB} crossing point in $B^0 \to K^* \mu^+ \mu^-$.

▶ LHCb is a wonderful environment for rare decay analyses.

