

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

A new take on dark matter in Little Higgs models

Alejandro de la Puente TRIUMF

Brookhaven Forum 2013 Brookhaven National Laboratory Upton, NY

Based on arXiv:1304.7835 In collaboration with Travis Martin, TRIUMF

Overview

- Motivation
- Dark Little Higgs Models
- Next to Littlest Higgs

Little Higgs Models

- Non-linear sigma model w/ collective symmetry breaking
- New states cancel quadratic divergences
 - $t \leftrightarrow T$
 - $W/Z \leftrightarrow W'/Z'$

 EWSB induced from top loop contributions to Higgs mass

Littlest Higgs Model

Littlest Higgs with T-Parity

- EWPO relaxed
- Light Higgs limits DM viability

Dark Little Higgs

- Question: Can we resolve (some of) the constraints on the Littlest Higgs and introduce dark matter, all without introducing T-parity?
- Claim: Yes.

Dark Little Higgs

- Little Higgs-ing the Inert Doublet Models
- Separate W' and T masses

Dark Little Higgs

- Little Higgs-ing the Inert Doublet Models
- Separate W' and T masses: (arXiv:1006.1356)
 - Introduce second (duplicate) coset space
 - G_{Σ}/H_{Σ} breaking at scale **f**
 - G_{Δ}/H_{Δ} breaking at scale F (>f)
 - Both global symmetries gauged the same
 - Fermions transform only under H_{Σ}
- M_{W'}² ~ Const. (f² + F²)

M_T² ~ Const. (f²)

•
$$SU(5)_{\Sigma}/SO(5)_{\Sigma}$$

 $\Pi_{\Sigma} = \begin{pmatrix} 0 & h^{\dagger}/\sqrt{2} & \phi^{\dagger} \\ h/\sqrt{2} & 0 & h^{\ast}/\sqrt{2} \\ f & h^{\top}/\sqrt{2} & 0 \end{pmatrix} + (Q_{1}^{a} - Q_{2}^{a})\eta^{a} \\ + \sqrt{5}(Y_{1} - Y_{2})\sigma \end{pmatrix}$

$$\Pi_{\Delta} = \begin{pmatrix} 0 & \xi^{\dagger}/\sqrt{2} & \chi^{\dagger} \\ \xi/\sqrt{2} & 0 & \xi^{\ast}/\sqrt{2} \\ \chi & \xi^{\top}/\sqrt{2} & 0 \end{pmatrix} + (Q_{1}^{a} - Q_{2}^{a})\alpha^{a} \\ + \sqrt{5}(Y_{1} - Y_{2})\sigma \end{pmatrix}$$

$$\frac{\sum \Delta}{h \quad \xi}$$

$$2 \mathbb{C} \text{ doublets} \quad h \quad \xi$$

$$2 \mathbb{C} \text{ triplets} \quad \phi \quad \chi$$

$$1 \mathbb{R} \text{ triplet} \quad \rightarrow \eta \leftarrow (\alpha)$$

$$1 \mathbb{R} \text{ singlet} \quad \rightarrow \sigma \leftarrow (\beta)$$

Next to Littlest Higgs

• Add to scalar kinetic terms

$$L_{K} = \frac{f^{2}}{8} Tr[(D_{\mu}\Sigma)(D^{\mu}\Sigma)^{\dagger}] + \frac{F^{2}}{8} Tr[(D_{\mu}\Delta)(D^{\mu}\Delta)^{\dagger}]$$

• Yukawa interactions unchanged

$$L_{Y} = \frac{1}{2} \lambda_{1} f \epsilon_{ijk} \epsilon_{xy} \chi_{i} \Sigma_{jx} \Sigma_{ky} u_{3}^{\prime c} + \lambda_{2} f \tilde{t} \tilde{t}^{\prime c} + h.c.$$

Coleman-Weinberg potential

$$V_{CW} = \frac{\Lambda^2}{32\pi^2} \text{Str} \left[M^2(\Sigma, \Delta) \right] + \frac{1}{64\pi^2} \text{Str} \left[M^4(\Sigma, \Delta) \left(\log \left(\frac{M^2(\Sigma, \Delta)}{\Lambda^2} \right) - \frac{1}{2} \right) \right]$$

Dark Matter Mass Splitting

- $V = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4$ $+ \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \lambda_5 \text{Re} [(H_1^{\dagger} H_2)^2]$
 - λ_5 term not generated from CW potential

$$V_{\Sigma\Delta} = -\lambda_{\Sigma\Delta} f^2 F^2 Tr [T_{\Sigma\Delta} (\Sigma - \Sigma_0) T_{\Sigma\Delta} (\Delta - \Delta_0)^{\dagger}] + \text{h.c.}$$

- $T_{\Sigma\Delta} = n_1 \text{ Diag}[1,1,0,0,0] + n_2 \text{ Diag}[0,0,0,1,1]$
- Need $\Delta M_{\xi} >$ few hundred keV, so $\lambda_{\Sigma\Delta}$ small ($\lambda_{\Sigma\Delta}=0.02 \rightarrow \Delta M_{\xi} \sim$ few GeV)

Phenomenology of NLH

• Sample spectrum

Phenomenology of NLH

• $\Omega h^2 = 0.1189$ (Planck results)

arXiv:1303.5076

- Monte Carlo parameters & use MicrOMEGAs
- 130k parameter sets:

Phenomenology of NLH

- Fix all parameters, vary f & $\lambda_{\Sigma \Delta}$ VI 0.5
 - s=0.24, s'=0.24
 - s_t=0.25
 - F=3000 GeV
 - a=1, a'=1

- f=1550 GeV
- $\lambda_{\Sigma\Delta} = 0.02 \rightarrow \Delta M(\xi) = 4.7 \text{ GeV}$
- $\Omega h^2 = 0.116$

- New class of Little Higgs models
- Motivates Inert Doublet models
- Can account for full relic abundance with ~500 GeV dark matter
- Relax precision constraints

Thank you!

- Acknowledgements:
 - Heather Logan
 - Thomas Grégoire
 - David Morrissey

Backup Slides

Littlest Higgs Model

- SU(5)/SO(5), breaking at scale f ~ O(TeV)
- Gauge [SU(2)xU(1)]²
- One loop log: $\mu^2 h^2$

$$\mu^{2} = \frac{\lambda}{16\pi^{2}} M_{\phi}^{2} \log \frac{\Lambda^{2}}{M_{\phi}^{2}} + \frac{3}{64\pi^{2}} \left(3g^{2} M_{W'}^{2} - \log \frac{\Lambda^{2}}{M_{W'}^{2}} + g'^{2} M_{B'}^{2} - \log \frac{\Lambda^{2}}{M_{B'}^{2}} \right) - \frac{3\lambda_{t}^{2}}{8\pi^{2}} m_{T}^{2} \log \frac{\Lambda^{2}}{m_{T}^{2}}$$

- New particle content:
 - Vector quark T
 - Gauge partners A_H, Z_H, W_H[±]
 - Scalars ϕ^0 , ϕ^{\pm} , $\phi^{\pm\pm}$

Littlest Higgs with T-Parity

• T-Parity: Z₂ symmetry

 $g_1 = g_2$ $g_1' = g_2'$

- T-Even:
 - H, W[±], Z, γ , u/d/e/ ν , Q₊
- T-Odd:
 - φ, W_H[±], Z_H, A_H, Q₋
- Triplet vev forbidden
- Avoid precision constraints from W_H/Z_H

Positive Singlet Mass

- $M_{\sigma^2} < 0$, leads to singlet vev (bad!)
- Introduce new term:

$V_{\Delta} = \lambda_{\Delta} F^{4} Tr [T_{\Delta} (\Delta - \Delta_{0})T_{\Delta} (\Delta - \Delta_{0})^{\dagger}]$

• $T_{\Delta} = Diag[0,0,1,0,0]$