ATLAS Recent Results A Higgs Centric Update

Elliot Lipeles University of Pennsylvania

BNL Forum 2013

A "Higgs" Boson has been Observed

Higgs: Understanding what have we found

The 2011 and 2012 Datasets

Mean Number of Interactions per Crossing

Data used in analysis: •2011 5fb⁻¹ 7 TeV •2012 20fb⁻¹ 8 TeV

Observed: WW, ZZ, and $\gamma\gamma$ Searches: bb, $\tau\tau$, $Z\gamma$, and $\mu\mu$

Higgs decays at m_H=125GeV

$H \to \gamma\gamma \, {\rm Signal}$

Inclusive: All production modes with $\gamma\gamma$ final state Signal strength relative to SM: 1.65 ± 0.24(stat)^{+0.25}_{-0.18}(syst)

ATLAS-CONF-2013-012

$H \to \gamma \gamma \, \mathrm{by} \, \mathrm{Production} \, \mathrm{Channel}$

Diphoton sample divided into exclusive subsets for different production mechanisms

80-90% leptonic WH and ZH remainder ttH

50% hadronic WH and ZH remainder ggF

54(76)%VBF for loose(tight) remainder ggF

75-95% ggF depending on category

Most categories not very pure in one production mode

ATLAS-CONF-2013-012

7

$H \rightarrow \gamma \gamma \text{ by Production Channel}$ $ATLAS Pr H \rightarrow \gamma \gamma Pr Result is yield in each category ent$

/

$H \to \gamma \gamma \, \mathrm{by} \, \mathrm{Production} \, \mathrm{Channel}$

Elliot Lipeles

 $H \rightarrow \gamma \gamma$ Spin

 $\cos\theta^*$ is the angle of photons relative to beam direction with a correction for the boost of the $\gamma\gamma$ system

Selection modified to reduce $m_{\gamma\gamma} - \cos \theta^*$ correlation

ATLAS-CONF-2013-029

 $H\to\gamma\gamma~{\rm Spin}$

The data are fit for signal and background yields for spin-0 and spin-2

The ratio of the best fit likelihoods is used as a test statistic to set limits

Only 8 TeV data are used at this point

Spin-2 produced by gluon fusion is excluded at 99% CL

ATLAS-CONF-2013-029

 $H \rightarrow ZZ$ Production

Elliot Lipeles

$H \to ZZ \ \mathrm{Spin}$

Considered J^p: 0⁺, 0⁻, 1⁺, 1⁻, 2⁺, 2⁻

Full kinematics measured = 5 angles Decay products sensitive to Z spins Two analysis methods:

- •BDT with MC for input
- •MELA = an analytic probability

based on field theory matrix element

Mass from $H \to \gamma \gamma$ and $H \to ZZ$

Some tension between $\gamma\gamma$ and ZZmass determinations Main systematics on $\gamma\gamma$ mass Photon energy scale (from $Z \rightarrow ee \text{ data}$) Material modeling (validated with γ conversions) Main systematics on ZZ mass Electron energy scale Muon momentum scale (both validated with J/ψ data)

Mass combined including systematic correlations

 $m_H = 125.5 \pm 0.2 \text{ (stat)}^{+0.5}_{-0.6} \text{ (sys) GeV}$

Many detailed cross-checks have been performed Consistency is at the 2.5 sigma level

High yield channel $\overline{\nu}$

W

W

The problem is that we can only work with the leptonic W decay which has a neutrino in it

H

 $H \rightarrow WW$ Overview

t

 $W \to \ell \nu$ is a spin analyzer because of the parity violation in the W decay

Also get approximate mass from missing momentum

$H \to WW$: Even finding WW is hard

- •Track-based missing momentum
- •Low energy hadronic recoil from calorimeter

$H \to WW \, {\rm Improvements}$

Elliot Lipeles

$H \rightarrow WW$ Result Plots

$H \to WW \; \mathrm{VBF} \; \mathrm{event}$

$H \to WW \operatorname{Spin}$

Discriminating variables: spin-2 looks more like background

 $H \rightarrow WW$ Spin

Spin Combination

Spin results from WW, ZZ, and $\gamma\gamma$ combined

$H\to\tau\tau$ Search

Analysis divided by (tau decay) x (VBF, ggF, Boosted ggF):

- •lepton-lepton
- •lepton-hadron
- hadron-hadron

$H \rightarrow bb$ Search

Extremely difficult because

- b-jets are common
- •jet resolutions are not so great
- •jet distributions hard to model
- Abandon gluon fusion (ggF) and focus on VH production • $V=W \rightarrow \ell \nu, Z \rightarrow \ell \ell, Z \rightarrow \nu \nu$
- •Focus on high P_TV systems

Analysis very complex

•Signal regions sliced based on 0, 1, or 2 leptons, and based on $P_T V$

 $\bullet Use \ lower \ P_T V \ to \ control$

background modeling

Not updated since HCP (Nov 2012)

Events/20 GeV

Events/20 GeV

$H \rightarrow bb$ Search

Even find the $WZ + ZZ \rightarrow Wb\bar{b} + Zb\bar{b}$ background was hard

Now 4.0 sigma signal for WZ+ZZ with one $Z \rightarrow b\overline{b}$ WZ+ZZ (to bb) is ~5

times the Higgs signal

Exclusion is 1.8 times the SM

95% C.L. limit on σ/σ_{SM}

 $H \rightarrow \mu \mu$ Search

If it is really the Higgs it couples to mass, so $H\to \mu\mu$ should be very small

 $H \to Z\gamma$ Search

Grand Combination

We combine all the inputs just discussed into global likelihood fit

includes correlations
of systematics

Summary of Production Modes

	ggF	VBF	VH	ttH
$\gamma\gamma$	\checkmark	\checkmark	\checkmark	\checkmark
WW	\checkmark	\checkmark		
ZZ	\checkmark	\checkmark	\checkmark	
au au	\checkmark	\checkmark	\checkmark	
$b\overline{b}$			\checkmark	\checkmark

Evidence of VBF production

Coupling Interpretation

30

Several different models depending on assumptions:

•New particles in loops?

•BSM contributions to total width

(invisible decays, other decays to BSM)?

Example looking for new physics in loops

Only decays to \mathbf{k}_{g} **ATLAS** Preliminary SM 2.2 **SM** particles $vs = 7 \text{ TeV}, \int Ldt = 4.6-4.8 \text{ fb}^{-1}$ $vs = 8 \text{ TeV}, \int Ldt = 13-20.7 \text{ fb}^{-1}$ × Best fit — 68% CL 1.08 ± 0.14 κ_g ---- 95% CL 1.8 $= 1.23^{+0.16}_{-0.13}$ 1.6 Κγ 1.4 1.2 Include invisible Х or other BSM 0.8 0.6 $= 1.08^{+0.32}_{-0.14}$ κ_g 0.9 12 1.5 1.6 13 $= 1.24^{+0.16}_{-0.14}$ κν

 $BR_{invisible or non-SM} < 0.6 at 95\% CL$

1.8

 κ_{γ}

Higgs to Invisible

We have also searched directly for Higgs to invisible...

Higgs to Invisible Interpretation

Implications for dark matter searches if DM to nucleon couplings is entirely Higgs

Based on expected sensitivity (BR_{inv}<0.75) very close to observed

Summary

There is definitely something there that strongly resembles the SM Higgs

Spin:

•various combinations of 0⁻, 1⁺, 1⁻, and 2⁺ excluded

Couplings:

 order 20-30% constraints on vectors, fermions just crossing the sensitivity thresholds

 Interesting sensitivity to dark matter and other BSM

