Mirage Models Confront the LHC Kähler-Stabilized Heterotic String Theory

> Bryan Kaufman Brent Nelson Mary K. Gaillard

Department of Physics, Northeastern University, Boston, MA 02115, USA

2 May 2013

・ 同 ト ・ 三 ト ・

Brookhaven Forum 2013 arXiv: 1303.6575

Bryan Kaufman Brent Nelson Mary K. Gaillard Mirage Models Confront the LHC

Bryan Kaufman Brent Nelson Mary K. Gaillard Mirage Models Confront the LHC

< 同 ▶

< ∃ >

э

э

BGW Model Overview

• I am studying the BGW (Binetruy, Gaillard, and Wu) model of supersymmetry

э

BGW Model Overview

- I am studying the BGW (Binetruy, Gaillard, and Wu) model of supersymmetry
- The BGW model is a supergravity effective theory; a low-energy effective field theory that is the direct consequence of a compactified $E_8 \times E_8$ heterotic string theory

BGW Model Overview

- I am studying the BGW (Binetruy, Gaillard, and Wu) model of supersymmetry
- The BGW model is a supergravity effective theory; a low-energy effective field theory that is the direct consequence of a compactified $E_8 \times E_8$ heterotic string theory
- This model breaks supersymmetry using gaugino condensation in the hidden sector

BGW Model Overview

- I am studying the BGW (Binetruy, Gaillard, and Wu) model of supersymmetry
- The BGW model is a supergravity effective theory; a low-energy effective field theory that is the direct consequence of a compactified $E_8 \times E_8$ heterotic string theory
- This model breaks supersymmetry using gaugino condensation in the hidden sector

- 4 同 6 4 日 6 4 日 6

• Masses of the superpartners end up depending on the parameters: $m_{3/2}$, $\tan\beta$, β_+ , and $\mathrm{sgn}(\mu)$

BGW - II

β_+ :

- β_+ is the $\beta\text{-function}$ coefficient for the hidden sector gauge group
- This gauge group must be asymptotically free

э

BGW - II

β_+ :

- β_+ is the $\beta\text{-function}$ coefficient for the hidden sector gauge group
- This gauge group must be asymptotically free
- Sets the ratio between gaugino masses and scalars; results in gauginos lighter than what one would see in the MSSM

・ロト ・同ト ・ヨト ・ヨト

BGW - II

β_+ :

- β_+ is the $\beta\text{-function}$ coefficient for the hidden sector gauge group
- This gauge group must be asymptotically free
- Sets the ratio between gaugino masses and scalars; results in gauginos lighter than what one would see in the MSSM
- Determined solely by Lie group invariants; constrained to be an integer between 3 and 90

 - 2 SO(10) requires $\beta_+ \leq 24$
 - Naïvely we prefer these lower values, though there is no reason to limit ourselves

・ロト ・同ト ・ヨト ・ヨト

BGW - III

• Gaugino masses, trilinear couplings and scalar masses are given by:

$$M_{a} = \frac{g_{a}^{2}(\mu_{R})}{2} \left[-3b_{a}m_{3/2} + \left(1 - b_{a}'K_{s}\right)F^{S} \right]$$

$$A_{ijk} = -\frac{K_{s}}{3}F^{S} + \frac{1}{3}\gamma_{i}m_{3/2} + \text{cyclic}(ijk)$$

$$M_{i}^{2} = (1 + \gamma_{i})m_{3/2}^{2} - \tilde{\gamma}_{i}\left(\frac{m_{3/2}F^{S}}{2} + \text{H.c.}\right)$$

(日) (同) (三) (三)

3

Preliminary Restrictions

- Choose $\mu > 0$
- Allow $m_{3/2}$ and β_+ to act as independent variables
- Scan over $m_{3/2}$, β_+ , and aneta
- Place the following restrictions
 - Broken electroweak symmetry
 - Satsify LEP limits for superpartners
 - Neutralino LSP

9
$$\mathfrak{B}(B_s \to \mu \mu) \in [2.00, 4.09] \times 10^{-9}$$

$$\bullet -11.4 \times 10^{-10} \le \delta a_{\mu} \le 9.4 \times 10^{-9}$$

Secondary Restrictions

- \bullet ATLAS and CMS report a Higgs of mass $\sim 126~{\rm GeV}$
 - **()** Require Higgs to be within 3σ of the reported 125.3 \pm 0.6 GeV

▲□ ► < □ ► </p>

Only the lower bound will constrain us

Secondary Restrictions

- ATLAS and CMS report a Higgs of mass $\sim 126~{\rm GeV}$
 - **1** Require Higgs to be within 3σ of the reported 125.3 \pm 0.6 GeV Only the lower bound will constrain us
- WMAP combined results claim $\Omega_{CDM}h^2 = 0.1153 \pm 0.0019$
- PLANCK finds a slightly higher $\Omega_{CDM}h^2 = 0.1199 \pm 0.0027$

Impose only a maximum dark matter content of 0.12

Initial Findings

Bryan Kaufman Brent Nelson Mary K. Gaillard Mirage Models Confront the LHC

Initial Findings - II

- The remaining region has a very high $\tan\beta,$ on the border of where EWSB is achievable
- Higgsino-like LSP
- Need high $m_{3/2}$; extend to 15 TeV
- Lock in $\tan\beta=42.5,$ a lower bound, and perform a two-parameter scan on $m_{3/2}$ and β_+

・ 同 ト ・ ヨ ト ・ ヨ ト

2D Scan - Higgs Mass Constraint

(日)

э

- ₹ 🖬 🕨

2D Scan - Dark Matter Constraint

э

- ₹ 🖬 🕨

Image: A = A

2D Scan - All Constraints Applied

-

< 17 ▶

Bryan Kaufman Brent Nelson Mary K. Gaillard Mirage Models Confront the LHC

Direct Detection

When and where could this model be discovered? Turn to direct detection experiments for answers

- LHC
 - Can directly produce (and hopefully detect) superpartners and their decay products
- Xenon-1T and LUX
 - Isolated tanks of Xenon buried deep underground
 - Oltra-low backgrounds
 - Search for evidence of WIMP-nucleon scattering

LHC Searches

- \bullet Choose a representative sample of the remaining ${\sim}38{,}000$ points to perform an LHC simulation
- Consider:
 - SUSY production cross sections
 - Gluino production
 - How much data must be collected before an observation could be made

| 4 同 🕨 🖌 4 目 🖌 4 目 🖌

- Compare benchmarks to optimized searches
 - Low multiplicity jets, High multiplicity jets, single lepton, same-sign dilepton, same-sign dilepton + B-tagged jets

Production at the LHC

- Low $\tilde{g}\tilde{g}$ production at 8 and 13 TeV; primarily $\tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}$
- \bullet Unlike simplified models used by ATLAS, these points have $m_{\tilde{\chi}^0}>0$
- \bullet Results in quiet events; low jet multiplicities, low m_{eff} and E_T^{Miss}
- With 7 and 8 TeV data, ATLAS can rule out models with gluinos as heavy as 1 TeV, we can only rule out gluinos at $\sim 500~{\rm GeV}$
- Gluinos above ${\sim}3~\text{TeV}$ are beyond the reach of the LHC; BGW can produce gluinos heavier than 5 TeV

Production at the LHC

- Low $\tilde{g}\tilde{g}$ production at 8 and 13 TeV; primarily $\tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}$
- \bullet Unlike simplified models used by ATLAS, these points have $m_{\tilde{\chi}^0}>0$
- \bullet Results in quiet events; low jet multiplicities, low m_{eff} and E_T^{Miss}
- With 7 and 8 TeV data, ATLAS can rule out models with gluinos as heavy as 1 TeV, we can only rule out gluinos at $\sim 500~{\rm GeV}$
- Gluinos above ${\sim}3~\text{TeV}$ are beyond the reach of the LHC; BGW can produce gluinos heavier than 5 TeV

- Turn to dark matter direct detection experiments
 - 1 Make a direct comparison to $\frac{\text{events}}{\text{kg}*\text{day}*(5-25)\text{keV}}$

Discovery Prospects at LUX

э

-

Bryan Kaufman Brent Nelson Mary K. Gaillard Mirage Models Confront the LHC

Looking Forward

- Heavy gluinos and LSPs mean this model will remain beyond the reach of the LHC for some time, if not forever
- LUX and Xenon-1T will be able to rule this model out within the first 1-2 years of operation
- We have a string-based model that is constrained on all sides
- This method of supersymmetry breaking via hidden sector gaugino condensation will either have supporting evidence, or be ruled out

arXiv: 1303.6575