New Water-based Liquid Scintillator For Large Physics Experiments

Chao Zhang

Brookhaven Forum 2013

05/02/2013

Can we combine the best part of a Cherenkov Detector with a Liquid Scintillator Detector?

Lots of light High efficiency (even at low energy)

Clear particle ID Direction information Highly transparent Cost effective Safe to handle

Can we combine the best part of a Cherenkov Detector with a Liquid Scintillator Detector?

1GeV muon

Clear particle ID Direction information Highly transparent Cost effective Safe to handle

Water-based Liquid Scintillator

2MeV positron & photon

Lots of light High efficiency (even at low energy)

What is water-based LS?

Fig. 2. The UV/VIS absorption (left) and fluorescence emission spectra (right) for carbostyril 124 and Alexa Fluor 350.

Previous WbLS trials are either gel-like or not stable over time.

A scintillation water serves as energy spectrometer that probes physics below Cerenkov threshold. *bridged by non-ionic syurfactant, i.e. LAB derivatives, sulfonate, sulfonic amine, etc.*

BNL Particle Physics 2012 M. Yeh

Properties of Water-based Liquid Scintillator

Applications of Water-based Liquid Scintillator

Simulation of a Large WbLS Detector

- Based on WCSim software (Geant4-based simulation used in LBNE Water detector concept design)
- SK-like geometry, 22.5 kton Fiducial Volume
- SK 20" PMT, 40% coverage
- WbLS material + scintillation + wavelength shifting

x%-WbLS (d=0.9945 g/cm ³) +PPO					
Element composition (%)	Н	0	С	S	N
	65.9	30.9	3.1	0.09	0.006
Refractive Index	1.3492 @580nm				
Timing	1.23 ns (26%) + 9.26 ns (74%)				
Absorption length	50m @430 nm				
Birks Constant	0.124 mm/MeV				
photon yield	90 / MeV (tunable)				

Example: a 500 MeV Muon

The $p \to K^+ \overline{v}$ Channel in Cerenkov Detectors

In WbLS, the Kaon prompt signal is suddenly visible

The $p \to K^+ \overline{v}$ Channel in WbLS Detectors

Main background: atmospheric v_{μ}

- Rising-time cut: distinguishes one-pulse (background) from two-pulse (signal) by rising-time (from 15% to 85% of maximum pulse height) of the pulse shape
- Reconstructed Kaon energy cut: by subtracting the reconstructed muon energy

Summary of Efficiency, Signal, Background

Selection	Efficiency		
800 < PE in first 100 ns < 1100	96.8%		
One Michel positron	99.2%		
Muon decay later than 100 ns	95.6%		
Rising time >= 10 ns or Reconstructed Kaon PE > 150	Free Protons	Bound Protons	
	96.4%	75.2%	
Total Efficiency	88.5%	69.0%	
#Protons (22.5 kton)	1.53E+33	5.98E+33	
Predicted Signal Events (in 10 y, t _{1/2} =2.8E33 y)	15.2		
Predicted Background (in 10 y)	0.1		

Projected Sensitivity

 $\tau(p \to K^+ \bar{\nu}) > 2 \times 10^{34}$ y at 90% C.L. in 10 years

Can We Achieve 90 photons/MeV?

3 low Intensity Proton Beams 4 Material Samples

210 MeV	dE/dx ~ K+ from PDK
475 MeV	Cerenkov threshold
2 GeV	MIP

Water	pure water
WbLS 1	0.4% LS
WbLS 2	0.99% LS
LS	pure LS

2 Detectors

Tub 1	PTFE (highly reflective white Teflon)
Tub 2	Aluminum coated with black Teflon

Light Yield Result from NSRL Run 2012

Light Yield Ratio of WbLS / pure LS **T1** Beam energy energy At 475 MeV At 210MeV Sample energy deposit deposit (MeV) 10 10 Ratio to LS Ratio to LS (MeV) Water, T1 Data 1 1 ● . T2 Data 70 T2 Data WbLS Sample/LS Ratio Sample/LS Ratio 210 0.1 0.1 LS 59 Water. 39 0.01 0.01 **WbLS** 475 LS 34 0.001 0.001 0.1 10 100 0.1 10 100 1 Doints offect LS Concentration (%) LS Concentration (%)

- The light yield of WbLS with 0.99% LS is measured to be 1% of pure LS.
- Typical photon yield for pure LS is ~9K optical photons / MeV.
- We can fabricate WbLS with 90 scintillation photons / MeV that satisfies the requirements for $p \to K^+ \overline{\nu}$ search !

T2

(MeV)

113

124

42

36

Improvement on NSRL Run 2013

May 6, 2013

Better separation of Cerenkov and scintillation light

Summary

- Water-base Liquid Scintillator is a novel particle detection medium that is
 - mass-producible
 - cost-effective
 - safe to handle
 - with high optical performance.
- WbLS detector can adjust light production for different physics applications
 - nucleon decay (detection below Cerenkov threshold)
 - double beta decay (metallic loading)
 - reactor monitoring, veto system, etc.
- A Geant4 based full detector simulation for WbLS application shows great potential in searching for proton decay $p \rightarrow K^+ \overline{v}$.

D. Beznosko. M.V. Diwan, S. Hans, L. Hu, D.E. Jaffe, S.H. Kettell, L. Littenberg, R. Rosero, H. Themann, B. Viren, E. Worcester, M. Yeh, C. Zhang