# Determining $f_{B}$ and $f_{B_{s}}$ on the Lattice 

Oliver Witzel<br>Center for Computational Science

BOSTON
UNIVERSITY

Brookhaven Forum 2013, Upton, NY, USA

## Phenomenological Importance


[http://ckmfitter.in2p3.fr, http://utfit.roma1.infn.it, http://www.latticeaverages.org]

## $B^{0}-\overline{B^{0}}$ Mixing

- Allows us to determine the CKM matrix elements
- Dominant contribution in SM: box diagram with top quarks

$$
\left.\begin{array}{c}
\left|V_{t d}^{*} V_{t b}\right| \text { for } B_{d} \text {-mixing } \\
\left|V_{t s}^{*} V_{t b}\right| \text { for } B_{s}-\text { mixing }
\end{array}\right\} \Delta M_{q}=\frac{G_{F}^{2} m_{W}^{2}}{6 \pi^{2}} \eta_{B} S_{0} M_{B_{q}} f_{B_{q}}^{2} B_{B_{q}}\left|V_{t q}^{*} V_{t b}\right|^{2}
$$

- Nonperturbative contribution: $f_{q}^{2} B_{B q}$
- Define the $S U(3)$ breaking ratio $\xi^{2}=f_{B_{s}}^{2} B_{B_{s}} / f_{B_{d}}^{2} B_{B_{d}}$

- CKM matrix elements are extracted by

$$
\frac{\Delta M_{s}}{\Delta M_{d}}=\frac{M_{B_{s}}}{M_{B_{d}}} \xi^{2} \frac{\left|V_{t s}\right|^{2}}{\left|V_{t d}\right|^{2}}
$$



- Experimental error of $\Delta M_{q}$ is better than a percent; lattice uncertainty for $\xi$ is about $3 \%$


## $B \rightarrow \pi / \nu$ form factor

- Allows to determine the CKM matrix element $V_{u b}$ from the experimental branching ratio

$$
\frac{d \Gamma(B \rightarrow \pi / \nu)}{d q^{2}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{192 \pi^{3} M_{B}^{3}}\left[\left(M_{B}^{2}+M_{\pi}^{2}-q^{2}\right)^{2}-4 M_{B}^{2} M_{\pi}^{2}\right]^{3 / 2}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

- Tension between exclusive determination and inclusive determinations of $V_{u b}$ is greater than $3 \sigma$


## Our Project

- Use domain-wall light quarks and nonperturbatively tuned relativistic $b$-quarks to compute at few-percent precision
- $B^{0}-\overline{B^{0}}$ mixing
- Decay constants $f_{B}$ and $f_{B_{s}}$
- $B \rightarrow \pi \ell \nu$ form factor [T. Kawanai]
$-g_{B^{*} B \pi}$ coupling constant [B. Samways]
- Tune RHQ parameters using bottom-strange states and high statistics
- Improve upon exploratory studies and verify made assumptions
- Validate tuning procedure by computing $b \bar{b}$ masses and splittings
- Derive lattice perturbation theory for matching lattice results to continuum 1-loop in tadpole-improved lattice perturbation [C. Lehner]
- Improve matching using a mostly-nonperturbative scheme for $f_{B}, f_{B_{s}}$ and $B \rightarrow \pi \ell \nu$


## 2+1 Flavor Domain-Wall Gauge Field Configurations

- Domain-wall fermions for the light quarks ( $u, d, s$ ) [Kaplan 1992, Shamir 1993]
- Iwasaki gauge action [lwasaki 1983]
- Configurations generated by RBC and UKQCD collaborations [C. Allton et al. 2008],
 [Y. Aoki et al. 2010]
approx. \# time

| L | $a(\mathrm{fm})$ | $m_{l}$ | $m_{s}$ | $m_{\pi}(\mathrm{MeV})$ | \# configs. | sources |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24 | $\approx 0.11$ | 0.005 | 0.040 | 331 | 1636 | 1 |
| 24 | $\approx 0.11$ | 0.010 | 0.040 | 419 | 1419 | 1 |
| 32 | $\approx 0.08$ | 0.004 | 0.030 | 307 | 628 | 2 |
| 32 | $\approx 0.08$ | 0.006 | 0.030 | 366 | 889 | 2 |
| 32 | $\approx 0.08$ | 0.008 | 0.030 | 418 | 544 | 2 |

## Relativistic Heavy Quark Action for the $b$-Quarks

- Relativistic Heavy Quark action developed by Christ, Li, and Lin for the $b$-quarks in 2-point and 3-point correlation functions [Christ, Li, Lin 2007; Lin and Christ 2007]
- Builds upon Fermilab approach [El Khadra, Kronfeld, Mackenzie 1997] by tuning all parameters of the clover action non-perturbatively; close relation to the Tsukuba formulation [Aoki, Kuramashi,
Tominaga 2003]
- Heavy quark mass is treated to all orders in $\left(m_{b} a\right)^{n}$
- Expand in powers of the spatial momentum through $O(\vec{p} a)$
- Resulting errors will be of $O\left(\vec{p}^{2} a^{2}\right)$
- Allows computation of heavy-light quantities with discretization errors of the same size as in light-light quantities
- Applies for all values of the quark mass
- Has a smooth continuum limit


## Nonperturbative Tuning of the RHQ Action Parameters

- Start from an educated guess for our three parameters $m_{0} a, c_{P}$, and $\zeta$
- Probe parameter space at seven points by measuring
spin-averaged mass: $\bar{M}=\left(M_{B_{s}}+3 M_{B_{s}^{*}}\right) / 4$
hyperfine-splitting: $\Delta_{M}=M_{B_{s}^{*}}-M_{B_{s}}$
ratio: $M_{1} / M_{2}=M_{\text {rest }} / M_{\text {kinetic }}$
- Assume linearity to relate parameters and oberservables
- Use PDG values to match parameters to experimental results
- Test and verify parameters
[Y. Aoki et al. 2012]



## Predictions for the Heavy-Heavy States

- RHQ action describes heavy-light as well as heavy-heavy mesons
- Tuning the parameters in the $B_{s}$-system we can predict bottomonium states and mass splittings




$$
\begin{array}{rlr}
\Upsilon=9410(30)(38) \mathrm{MeV} & h_{b}=9862(36)(39) \mathrm{MeV} & M_{\Upsilon}-M_{\eta_{b}}=49(02)(17) \\
\eta_{b}=9350(33)(37) \mathrm{MeV} & \chi_{b 1}=9851(35)(39) \mathrm{MeV} & M_{\chi_{b 1}}-M_{\chi_{b 0}}=38(01)(16) \\
& \chi_{b 0}=9808(35)(39) \mathrm{MeV} & \text { [Y. Aoki et al. 2012] }
\end{array}
$$

## $B$-meson Decay Constant Calculation

- Use point-source light quark and generate Gaussian smeared-source heavy quark
- Computation performed with seven parameter box and interpolated to the tuned RHQ parameters
- Axial current will be 1-loop $O(a)$ improved
- Result will use mostly nonperturbative renormalization
- Combined chiral and continuum extrapolation using heavy meson $\chi$ PT



## Mostly Nonperturbative Renormalization

For $f_{B}, f_{B_{s}}$ and $B \rightarrow \pi$ we plan to compute mostly non-perturbative renormalization factors á la [El Khadra et al. 2001]

$$
\varrho^{b l}=\frac{Z_{V}^{b l}}{\sqrt{Z_{V}^{b b} Z_{V}^{\|}}}
$$

- Compute $Z_{V}^{\|}$and $Z_{V}^{b b}$ non-perturbatively and only $\varrho^{b l}$ perturbatively
- Enhanced convergence of perturbative serious of $\varrho^{b l}$ w.r.t. $Z_{V}^{b l}$ because tadpole diagrams cancel in the ratio
- Bulk of the renormalization is due to flavor conserving factor
$\sqrt{Z_{V}^{\prime \prime} Z_{V}^{b b}} \sim 3$
- $\varrho^{b l}$ is expected to be of $\mathcal{O}(1)$; receiving only small corrections
- For domain-wall fermions $Z_{A}=Z_{V}+\mathcal{O}\left(m_{\text {res }}\right)$ i.e. we know $Z_{V}^{\prime \prime}$ [Y. Aoki et al. 2011] and compute $Z_{\vee}^{b b}$ ourselves


## Preliminary Results for $f_{B}$ and $f_{B_{s}}$



## Preliminary Results $f_{B_{s}}$



- Data for $f_{B_{s}}$ are quite linear and show no seaquark mass dependence
- Average data at same lattice spacing and assume $a^{2}$ scaling


## Preliminary Results $f_{B_{s}} / f_{B}$



- Use our close to strange quark propagators to compute the ratio $\frac{f_{B_{s}}}{f_{B}}=\frac{\Phi_{B_{s}}}{\Phi_{B_{d}}} \sqrt{\frac{M_{B_{d}}}{M_{B_{s}}}}$
- $\chi$ PT fits are still tricky but...


## Preliminary Results $f_{B_{s}} / f_{B}$


... we have a nice analytic fit for the chiral data

## Status of $B \rightarrow \pi \ell \nu$ [T. Kawanai]

- The $B \rightarrow \pi \ell \nu$ hadronic weak matrix element is parameterized by

$$
\langle\pi| \mathcal{}^{\mu}|B\rangle=f_{+}\left(q^{2}\right)\left(p_{B}^{\mu}+p_{\pi}^{\mu}-\frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}\right) f_{0}\left(q^{2}\right) \frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}
$$

- On the lattice we determine

$$
\langle\pi| \mathcal{V}^{\mu}|B\rangle=\sqrt{2 M_{B}}\left[v^{\mu} f_{\|}\left(E_{\pi}\right)+p_{\perp}^{\mu} f_{\perp}\left(E_{\pi}\right)\right]
$$




## Preliminary Results $g_{B^{*} B \pi}$ coupling constant [B. Samways]

- $\chi$ PT expressions for $f_{B}, B \rightarrow \pi \ell \nu$ form factors or $B$-meson mixing matrix elements require knowledge on $g_{B^{*} B \pi}$
- On the lattice compute $B^{*} B \pi$ three-point function




## Conclusion

- We have completed tuning the parameters of the RHQ action for $b$-quarks, and find good agreement between our predictions for bottomonium masses and fine splittings with experiment.
- Given this success, we are now using this method for B-meson quantities such as decay constants, neutral $B$-meson mixing parameters and form factors, and expect to obtain errors competitive with other groups.
- We are finalizing the analysis of $f_{B}, f_{B_{s}}$ and $f_{B_{s}} / f_{B} \ldots$

