Introduction 000 Actions

Results *bb*

B-physics

Conclusion

Determining f_B and f_{B_s} on the Lattice

Oliver Witzel Center for Computational Science

Brookhaven Forum 2013, Upton, NY, USA

Introduction	Actions	Results <i>bb</i>	B-physics	Conclusion
● ○ ○	0000	00	0000000	

Phenomenological Importance

[http://ckmfitter.in2p3.fr, http://utfit.roma1.infn.it, http://www.latticeaverages.org]

$B^0 - \overline{B^0}$ Mixing

- Allows us to determine the CKM matrix elements
- Dominant contribution in SM: box diagram with top quarks

 Experimental error of ΔM_q is better than a percent; lattice uncertainty for ξ is about 3%

$B \rightarrow \pi I \nu$ form factor

► Allows to determine the CKM matrix element V_{ub} from the experimental branching ratio

$$\frac{d\Gamma(B \to \pi I \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192 \pi^3 M_B^3} \left[(M_B^2 + M_\pi^2 - q^2)^2 - 4M_B^2 M_\pi^2 \right]^{3/2} |f_+(q^2)|^2$$

▶ Tension between exclusive determination and inclusive determinations of V_{ub} is greater than 3σ

Introduction	Actions	Results bb	B-physics	Conclusion
000	●000	00	0000000	

Our Project

- Use domain-wall light quarks and nonperturbatively tuned relativistic b-quarks to compute at few-percent precision
 - ▶ $B^0 \overline{B^0}$ mixing
 - ▶ Decay constants f_B and f_{B_s}
 - $B \to \pi \ell \nu$ form factor [T. Kawanai]
 - $g_{B^*B\pi}$ coupling constant [B. Samways]
- ▶ Tune RHQ parameters using bottom-strange states and high statistics
 - Improve upon exploratory studies and verify made assumptions
 - \blacktriangleright Validate tuning procedure by computing $b\bar{b}$ masses and splittings
- Derive lattice perturbation theory for matching lattice results to continuum 1-loop in tadpole-improved lattice perturbation [C. Lehner]
 - ▶ Improve matching using a mostly-nonperturbative scheme for f_B , f_{B_s} and $B \rightarrow \pi \ell \nu$

Introduction	Actions	Results bb	B-physics	Conclusion
000	0000	00	0000000	

2+1 Flavor Domain-Wall Gauge Field Configurations

- Domain-wall fermions for the light quarks (u, d, s) [Kaplan 1992, Shamir 1993]
- Iwasaki gauge action [Iwasaki 1983]
- Configurations generated by RBC and UKQCD collaborations [C. Allton et al. 2008], [Y. Aoki et al. 2010]

L	<i>a</i> (fm)	m _l	m _s	$m_{\pi}({ m MeV})$	approx. # configs.	# time sources
24	pprox 0.11	0.005	0.040	331	1636	1
24	pprox 0.11	0.010	0.040	419	1419	1
32	pprox 0.08	0.004	0.030	307	628	2
32	pprox 0.08	0.006	0.030	366	889	2
32	pprox 0.08	0.008	0.030	418	544	2

Introduction	Actions	Results bb	B-physics
000	0000	00	0000000

Relativistic Heavy Quark Action for the *b*-Quarks

- Relativistic Heavy Quark action developed by Christ, Li, and Lin for the *b*-quarks in 2-point and 3-point correlation functions [Christ, Li, Lin 2007; Lin and Christ 2007]
- Builds upon Fermilab approach [El Khadra, Kronfeld, Mackenzie 1997] by tuning all parameters of the clover action non-perturbatively; close relation to the Tsukuba formulation [Aoki, Kuramashi, Tominaga 2003]
- Heavy quark mass is treated to all orders in $(m_b a)^n$
- Expand in powers of the spatial momentum through $O(\vec{p}a)$
 - Resulting errors will be of $O(\vec{p}^2 a^2)$
 - Allows computation of heavy-light quantities with discretization errors of the same size as in light-light quantities
- Applies for all values of the quark mass
- Has a smooth continuum limit

Introduction	Actions	Results bb	B-physics	Conclusion
000	0000	00	0000000	

Nonperturbative Tuning of the RHQ Action Parameters

- Start from an educated guess for our three parameters m_0a , c_P , and ζ
- ▶ Probe parameter space at seven points by measuring spin-averaged mass: $\overline{M} = (M_{B_s} + 3M_{B_s^*})/4$ hyperfine-splitting: $\Delta_M = M_{B_s^*} - M_{B_s}$ ratio: $M_1/M_2 = M_{\text{rest}}/M_{\text{kinetic}}$
- Assume linearity to relate parameters and oberservables
 Use PDG values to match parameters to experimental results
- ► Test and verify parameters [Y. Aoki et al. 2012]

Introduction	Actions	Results bb	B-physics	Conclusion
000	0000	•0	0000000	

Predictions for the Heavy-Heavy States

- ▶ RHQ action describes heavy-light as well as heavy-heavy mesons
- ▶ Tuning the parameters in the *B_s*-system we can predict bottomonium states and mass splittings

$$\begin{split} \Upsilon &= 9410(30)(38) \text{ MeV} \quad h_b = 9862(36)(39) \text{ MeV} \quad M_{\Upsilon} - M_{\eta_b} = 49(02)(17) \\ \eta_b &= 9350(33)(37) \text{ MeV} \quad \chi_{b1} = 9851(35)(39) \text{ MeV} \quad M_{\chi_{b1}} - M_{\chi_{b0}} = 38(01)(16) \\ \chi_{b0} &= 9808(35)(39) \text{ MeV} \quad [\Upsilon. \text{ Aoki et al. } 2012] \end{split}$$

B-meson Decay Constant Calculation

- ▶ Use point-source light quark and generate Gaussian smeared-source heavy quark
- Computation performed with seven parameter box and interpolated to the tuned RHQ parameters
- Axial current will be 1-loop O(a) improved
- ▶ Result will use mostly nonperturbative renormalization
- \triangleright Combined chiral and continuum extrapolation using heavy meson χPT

Introduction	Actions	Results bb	B-physics	Conclusion
000	0000	00	0000000	

Mostly Nonperturbative Renormalization

For f_B , f_{B_s} and $B \rightarrow \pi$ we plan to compute mostly non-perturbative renormalization factors á la [El Khadra et al. 2001]

$$\varrho^{bl} = \frac{Z_V^{bl}}{\sqrt{Z_V^{bb} Z_V^{ll}}}$$

- Compute Z_V^{ll} and Z_V^{bb} non-perturbatively and only ϱ^{bl} perturbatively
- Enhanced convergence of perturbative serious of ρ^{bl} w.r.t. Z_V^{bl} because tadpole diagrams cancel in the ratio
- \blacktriangleright Bulk of the renormalization is due to flavor conserving factor $\sqrt{Z_V'' Z_V^{bb}} \sim 3$
- ρ^{bl} is expected to be of $\mathcal{O}(1)$; receiving only small corrections
- ► For domain-wall fermions $Z_A = Z_V + O(m_{res})$ i.e. we know Z_V'' [Y. Aoki et al. 2011] and compute Z_V^{bb} ourselves

Introduction	Actions	Results <i>bb</i>	B-physics
000	0000	00	0000000

Preliminary Results for f_B and f_{B_s}

• On the lattice we compute Φ_{B_q} $f_B = \Phi_{B_q}^{\text{ren}} \cdot a_{32}^{-3/2} / \sqrt{M_{B_q}}$

Conclusion

- Working on combined chiral and continuum extrapolation
- ► Difficulties to fit our data using (N)NLO SU(2) or SU(3) HM_XPT

Introduction	Actions	Results <i>bb</i>	B-physics	Conclusion
000	0000	00	0000000	

Preliminary Results f_{B_s}

- ► Data for f_{Bs} are quite linear and show no seaquark mass dependence
- Average data at same lattice spacing and assume a² scaling

Introduction	Actions	Results bb	B-physics	Conclusion
000	0000	00	00000000	

Preliminary Results f_{B_s}/f_B

Introduction	Actions	Results bb	B-physics	Conclusion
000	0000	00	00000000	

Preliminary Results f_{B_s}/f_B

... we have a nice analytic fit for the chiral data

Status of $B \to \pi \ell \nu$ [T. Kawanai]

▶ The $B \rightarrow \pi \ell \nu$ hadronic weak matrix element is parameterized by $\langle \pi | \mathcal{V}^{\mu} | B \rangle = f_{+}(q^{2}) \left(p_{B}^{\mu} + p_{\pi}^{\mu} - \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu} \right) f_{0}(q^{2}) \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu}$

On the lattice we determine

 $\langle \pi | \mathcal{V}^{\mu} | B \rangle = \sqrt{2M_B} \left[v^{\mu} f_{\parallel}(E_{\pi}) + p^{\mu}_{\perp} f_{\perp}(E_{\pi}) \right]$

Introduction	Actions	Results bb	B-physics	Conclusion
000	0000	00	0000000	

Preliminary Results $g_{B^*B\pi}$ coupling constant [B. Samways]

- ▶ χ PT expressions for f_B , $B \rightarrow \pi \ell \nu$ form factors or *B*-meson mixing matrix elements require knowledge on $g_{B^*B\pi}$
- On the lattice compute $B^*B\pi$ three-point function

Introduction	Actions	Results <i>bb</i>	B-physics
000	0000	00	0000000

We have completed tuning the parameters of the RHQ action for b-quarks, and find good agreement between our predictions for bottomonium masses and fine splittings with experiment. Conclusion

- Given this success, we are now using this method for B-meson quantities such as decay constants, neutral B-meson mixing parameters and form factors, and expect to obtain errors competitive with other groups.
- We are finalizing the analysis of f_B , f_{B_s} and f_{B_s}/f_B ...