

Higgs Amidst the LHC

Detector

Prerit Jaiswal Florida State University

BNL Forum 2013, Brookhaven National Lab

arXiv:1303.1181 : PJ, Karoline Köpp, Takemichi Okui

. Post Higgs Discovery - Now what? Look for deviations in (OXBr) for Higgs decay to standard final states. . Study non SM-like Higgs decays, for example : invisible Higgs decays, $h \rightarrow 2b2\tau$, etc . New modes of Higgs production, for example : neutralino decays to Higgs + MET in SUSY.

. Post Higgs Discovery - Now what? Look for deviations in (OXBr) for Higgs decay to standard final states. . Study non SM-like Higgs decays, for example : invisible Higgs decays, $h \rightarrow 2b2T$, etc . New modes of Higgs production, for example : neutralino decays to Higgs + MET in SUSY. Are there more exotic Higgs production modes?

A Símple (toy) Model . Minimal Extensions of SM? . Flavor Constraints . Electroweak Precision Constraints . Anomaly-free · S. Vector-like fermions : \cdot Electroweak triplet $(1,3)_0: \omega$ (Dirac) and, singlet $(1,1)_{0}$: X (massless Weyl) . An additional U(1) x symmetry

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm ren} + \sum_{n} \frac{\mathcal{O}_{5}^{(n)}}{\Lambda_{n}} \qquad \begin{array}{l} \mathcal{O}_{5}^{(2)} = \mathrm{i}\epsilon^{abc}H^{\dagger}\sigma^{a}H\,\omega_{\rm R}^{b\dagger}\omega_{\rm L}^{c} \\ \mathcal{O}_{5}^{(3)} = H^{\dagger}\sigma^{a}H\,\omega_{\rm R}^{a\dagger}\chi_{0{\rm L}} \\ \Lambda_{2} \leq 200 \text{ TeV} \\ \Lambda_{2} \geq 200 \text{ TeV} \\ \Lambda_{2} \geq 200 \text{ TeV} \\ \Lambda_{2} \geq 200 \text{ TeV} \\ m_{\omega\pm} = m_{\omega} + \Delta m_{\omega} - \frac{v^{2}}{2\Lambda_{2}}, \\ m_{\omega^{2}\pm} = m_{\omega} + \Delta m_{\omega} + \frac{v^{2}}{2\Lambda_{2}}, \\ m_{\omega^{2}\pm} = m_{\omega} + \Delta m_{\omega} + \frac{v^{2}}{2\Lambda_{2}}, \\ m_{\omega_{0}} = m_{\omega} + \frac{v^{4}}{8m_{\omega}\Lambda_{3}^{2}}. \\ \end{array}$$

· ¿· Wo Decays

 \cdot ω_{\pm} Decays

• $\mathcal{E} = \omega'_{\mp}$ Decays

(i) Long-lived charged particles
(ii) Displaced WW + MET
(iii) Prompt WW + MET
(iv) Prompt W h + MET and Prompt WW + MET
(v) Displaced W h + MET and Prompt WW + MET
(vi) Displaced W h + MET and Displaced WW + MET
(vii) Displaced h h + MET
(vii) Displaced h h + MET
(viii) Pure MET

 $\cdot * \omega_+$ is the NLSP. * ω_{\pm} decays promptly ($T_0 < 1 \text{ mm}$). Visible Final States : Prompt WW

- Dílepton signatures (always opposite sign)
- mT2 searches arXiv:1208.2884 (ATLAS), arXiv:1301.0916(CMS)
- . Contribution to WW crosssection.

(d)

 $\cdot * \omega_+$ is the NLSP. * ω_{\pm} decays promptly ($\tau_0 < 1 \text{ mm}$). Visible Final States : Prompt WW

- Dilepton signatures (always opposite sign)
- mT2 searches arXiv:1208.2884 (ATLAS), arXiv:1301.0916(CMS)
- Contribution to WW cross-section.

 $\frac{\text{Region (vi)}}{(viii)}: \quad \text{Displaced Wh+MET}$ \cdot All ω decay to χ_0 in a single step. Both ω_0 and ω_{\pm} are long-lived. Search for displaced Higgs.

· Displaced Higgs (decays inside ID) $\cdot \underbrace{h \to b\overline{b}}$: Highly displaced b-jets. $\cdot h \to n \text{ jets} + X \ (n \ge 2)$: trackless jets : use triggers for hidden valley in ATLAS. $h \to gg, h \to b\overline{b}, h \to WW^* \to 4j \text{ or } \ell \nu 2j, h \to ZZ^* \to 4j$ $h \to n\ell + X \ (n \ge 2)$: Displaced Dilepton Resonance Searches [CMS : arXiv:1211.2472] $h \rightarrow \ell + n \text{ jets} + X$: Displaced Lepton + Jets (RPV) Searches) [ATLAS-CONF-2012-113] · $h \rightarrow \gamma \gamma$ or γZ : Displaced diphoton resonance

 ATLAS triggers for long-lived neutral particles that decay inside HCAL.

[ATL-PHYS-PUB-2009-082]

· Displaced Higgs (decays inside MS)

- ★ Hidden valley searches : h → π_v π_v
 [ATLAS : arXiv:1203.1303]
- Reduced signal efficiency due to wrong bunch crossing identification.

Conclusion

LHC should look for dísplaced Híggs and ít can.

Backup Slides

LHC has discovered 125 GeV Higgs Looks increasingly SM-like.

LHC has discovered 125 GeV Higgs Looks increasingly SM-like.

 $m_{\omega} = 140 \text{ GeV}$

	$\sqrt{s} = 1.96 \text{ TeV}$	$\sqrt{s} = 7 \mathrm{TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 14 \mathrm{TeV}$
	Tevatron Run	LHC Run	LHC Run	LHC Run
$p p(\overline{p}) o \omega_0 \omega$	0.16 pb	0.61 pb	0.78 pb	2.01 pb
$p p(\overline{p}) \to \overline{\omega}_0 \omega_+$	0.16 pb	1.23 pb	1.52 pb	3.45 pb
$p p(\overline{p}) \to \omega_0 \omega'_+$	0.16 pb	1.23 pb	1.52 pb	3.45 pb
$p p(\overline{p}) \to \overline{\omega}_0 \omega'$	0.16 pb	0.61 pb	0.78 pb	2.01 pb
$p p(\overline{p}) \to \omega_+ \omega$	0.22 pb	0.91 pb	1.14 pb	2.74 pb
$p p(\overline{p}) \to \omega'_+ \omega'$	0.22 pb	0.91 pb	1.14 pb	2.74 pb

· SM WW Cross-section Measurement

		Measured (pb)	MCFM NLO (pb)
ATLAS	7 TeV	51.9 ± 2.0 (stat) ± 3.9 (syst) ± 2.0 (lumi)	44.7 ^{+ 2.1} _{- 1.9}
CMS	7 TeV	52.4 ± 2.0 (stat) ± 4.5 (syst) ± 1.2 (lumi)	47.0 ± 2.0
CMS	8 TeV	69.9 ± 2.8 (stat) ± 5.6 (syst) ± 3.1 (lumi)	57.3 ^{+ 2.4} _{- 1.6}

arXiv:1206.6888 : David Curtin, PJ, Patrick Meade

• <u>Region (v)</u>: Displaced Wh+MET Prompt WW+MET \Rightarrow All ω decay to χ_0 in a single step. ✤ wolifetime : 0.1-1 mm (phase space suppression) but w_{\pm} prompt. Reduced b-tagging efficiency.

b-tagging for prompt Higgs production.

b-tagging for displaced Higgs production.

 \therefore Charged ω decay to ω_0 instead of χ_0 . Displaced di-Higgs production.

• This region is sensitive to Monojet + MET, $\gamma/Z/W$ + MET searches.

Full 8 TeV data set may exclude this region.

