Visible and Invisible Clues for New Physics

Hooman Davoudias

HET Group, Brookhaven National Laboratory

SULI Lecture, Physics Department, BNL June 7, 2019

 $\hbar \approx 1.05 \times 10^{-34} \text{ Js}$; $c \approx 3.0 \times 10^8 \text{ m/s}$

 $\hbar=c=1$ in what follows

Mass and Energy measured in eV

```
Length \leftrightarrow 1/Mass
```

```
GeV (Giga eV) = 10^9 eV
```

proton mass ≈ 1 GeV

TeV (Tera eV) =
$$10^{12}$$
 eV

Everyday life:

Gravity and Electromagnetism (EM)

Falling Apple: Gravity

Well-described by Newtonian gravity

State of the Art: General relativity (GR)

- Spacetime curved by matter/energy.
 Sun
- Gravitational Force \rightarrow Geodesic.

Earth's Orbit

• Basis of modern cosmology.

Einstein's equations:

Curvature

 ${\cal G}_{\mu
u}=8\,\pi\,G_N\,{\cal T}_{\mu
u}\,\,\,\, {
m Energy\,Distribution}$

 G_N Newton's constant, $\mu,
u = 0, 1, 2, 3$ (spacetime).

***** Detection of Gravitational Waves *****

- \bullet Directly confirms a long-standing (\sim 100 year) GR prediction
- Manifestation of the dynamical nature of spacetime

(SXS Project)

- Outstanding experimental achievement: measured strain (distance variation) $\sim 10^{-21}!$ (highly sophisticated laser interferometry)
- 2017 Nobel Prize in Physics: Barish, Thorne, and Weiss

Shadow of M87*, Event Horizon Telescope

Mass: ~ 6.5 Billion Solar Masses ; Distance: ~ 55 Million Light Years

Results released April 10, 2019

Apple on the ground: EM

- Atoms in apple and ground: EM forces stop the fall.
- Atom: Nucleus (p and n) and electrons; Quantum Mechanics.
- Nuclear forces: weak and strong, not everyday, microscopic.
- Weak and EM forces \rightarrow Unified Electroweak Theory.

Summed up in the Standard Model of particle physics.

The Standard Model (SM):

Most precise description of microscopic physics

• Gauge symmetry: $SU(3)(\text{strong}) \times SU(2) \times U(1)(\text{electroweak})$

• Elementary fermions, spin-1/2 Quarks (+2/3, -1/3): Strong interactions Leptons (0, -1): No strong interactions

Gauge Fields, spin-1
 Force mediators, generalized photons

Strong Interactions [SU(3) (QCD)]:

- Short-ranged, confined to nuclear distances $\sim 10^{-15}$ m.
- Gluons (g) bind quarks into hadrons (hadros: Greek for "bulky"): p, n, π^0 ($\bar{q}q$),...

Electroweak Interactions $[SU(2)_L \times U(1)_Y]$:

Spontaneously* broken to EM

 \Rightarrow Massive W^{\pm} (80.4 GeV/ c^2), Z^0 (91.2 GeV/ c^2)

Short-ranged: $\Delta x \sim c \, \Delta t \sim \hbar/(mc) \sim 10^{-18}$ m. (Heisenberg uncertainty)

• EM: $U(1)_{EM}$ (QED)

Massless photon, γ , long-ranged

***** What is a spontaneously broken symmetry?

Tabletop Spontaneous Symmetry Breaking

A pencil, standing on its tip: unstable, falls to its "ground state".

- Underlying theory: rotationally symmetric, no preferred direction.
- The pencil spontaneously picks an orientation, breaks the symmetry.

What breaks electroweak symmetry?

Key question probed at the LHC (pp collider) at CERN

Beam energy: 2×7000 GeV (design) 2×6500 GeV Run finished in 2018; to resume in 2021 Circumference (km): 26.659

Electroweak Symmetry Breaking in SM

- Higgs (H) boson condensation $\langle H \rangle \neq 0$.
- Mass from interactions with $\langle H \rangle \neq 0$:
- $m_W, m_Z, m_{\text{fermion}} \propto \langle H \rangle$
- Fermion flavor: $m_t/m_u \sim 10^5!$ (Why?)

• $\mathbf{m}_{
u} = \mathbf{0}$ (Strongly disfavored by data!)

* Aside: Visible mass in universe mostly from QCD.

July 4th, 2012, discovery announced at CERN:

New scalar H discovered at ~ 125 GeV!

Run 2 data, ATLAS-CONF-2018-031

SM + **GR** \Rightarrow **Great Success!**

Particles of the Standard Model

Nearly all^{*} measurements in agreement with SM+GR.

$$^{m{*}}$$
 Discrepancy in $g_{\mu}-$ 2 at \sim 3.5 σ

 $\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = 268(76) \times 10^{-11}$ $a_{\mu} \equiv (g_{\mu} - 2)/2$

* Other anomalies (e.g. some B meson decays) at similar or lesser significance

SM: An Incomplete Description of Nature

• Theoretical Hints

Why is gravity so weak?

Why is the neutron EDM so small ($\bar{\theta} \lesssim 10^{-9}$)?

• Experimental Evidence

 $m_{
u} \neq 0$, dark matter, . . .

Conceptual Mystery: Why is gravity so weak?

Force between e and p in an atom: $\frac{F(\text{Grav})}{F(\text{EM})} \sim 10^{-40}!$

Gravity: the weakest known interaction

Newton's Constant: $G_N = 6.67 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$

Interaction \rightarrow mass scale (\propto 1/length) (Heisenberg)

Gravity scale: Planck mass

 $M_P \equiv (\hbar c/G_N)^{1/2} pprox 10^{19} {
m ~GeV} \sim (10^{-35} {
m ~m})^{-1} !$ $M_P \gg m_W$

 $\hbar = c = 1.$

Rephrase the question: Why is $m_W \sim 10^{-17} M_P$? The Hierarchy Problem:

• SM requires $m_W \sim \langle H \rangle$, but quantum effects imply $\langle H \rangle \rightarrow M_P$.

 $\Rightarrow m_W^2 \sim (100 {\rm ~GeV})^2$: cancelations to

• Conceptually "unnatural."

A much more severe case: Energy density of empty space (10^{-120}) ; Cosmological Constant problem.

Hierarchy and New Physics Near m_H

- Strong Interactions near m_H
- Composite Higgs (analogue of a QCD hadron)

- Extra dimensions (lowering the fundamental mass scale of gravity by diluting it in other compact dimensions)

- Supersymmetry: Fermions \leftrightarrow Bosons.
- Quantum effects on $\langle H \rangle$ cancel
- Spontaneously broken:

Very short distance: Higgs cannot "see" it (back to hierarchy). Very long distances: We should "see" it (we do not).

- ⇒ Superpartners near Higgs mass
- So far, no evidence at LHC for new physics near m_H
- More elusive physics, or perhaps "naturalness" not the right guide

Strong Empirical Evidence for Beyond SM

- Neutrino Flavor Oscillations
- Solar, atmospheric, and terrestrial data:

$$m_
u \lesssim 10^{-6} m_e$$

- Simple extension: right-handed neutrinos u_R
- Typically, difficult to test:
- ν_R very massive or else negligible coupling to SM
- Cosmology
- Dark Matter: neutral, cosmologically stable

95% of Cosmos: unknown!

Cosmic acceleration (dark energy): Could be vacuum energy; no dynamics

Visible (Everyday) Matter

- \sim 5% of energy budget
- Baryonic: protons, neutrons
- Asymmetric: $\Delta B \neq 0$.

 $\eta_B = n_B/s \sim 10^{-10}$

- Negligible anti-matter today:
- No annihilation signals nearby
- Cosmic ray \bar{p} consistent with secondaries,...
- Matter/antimatter separation unlikely on large scales
- Note: $e^{-m/T} \sim 10^{-10}$ at $T \sim 40$ MeV; horizon contains $\sim 10^{-7} M_{\odot}$

Generation of Baryon Asymmetry

- Requires Sakharov's conditions for *baryogenesis*:
- (i) Baryon number violation
- (ii) C and CP violation (distinguishing particles from anti-particles)
- (iii) Departure from equilibrium
- Present in Standard Model (SM), but not in sufficient amounts
 (i): EW anomaly: tunneling (suppressed), thermal, Sphalerons (T ≫ M_W)
 (ii): Quark mass matrix (Cabbibo-Kobayashi-Maskawa), but CP violation too small
 (iii) EW phase transition: not strongly first order (Higgs too heavy)
- ΔB small, but still too big to explain! \Rightarrow New Physics

Dark matter (DM)

- \sim 27% of energy density
- Robust evidence from cosmology and astrophysics
- CMB, BBN, rotation curves of galaxies, lensing, Bullet Cluster, ...

Unknown origin

- Feeble interactions with atoms, light
- Self-interactions not strong ($\sigma \lesssim 1$ barn)
- Not explained in SM

Strongly motivates new physics

So far, evidence limited to gravity effects

How do you look for something of unknown nature?

Possible DM mass scale: $10^{-22} eV \lesssim M_{DM} \lesssim 10^{68} eV$ (~ 90 orders of magnitude!) Searches often guided by theoretical motivation

• New physics to address unresolved questions in SM

Example:

- The hierarchy problem in SM:
- New particles with masses $M_{\sf new}\gtrsim M_{H}(pprox$ 125) GeV: supersymmetry, . . .
- Energy scale often referred to as the "weak scale" (weak interactions)
- ⇒ Weakly Interacting Massive Particles (WIMPs)
- SM extensions often introduce/require new symmetries
- Symmetry \rightarrow Charge conservation
- \Rightarrow Stable or long-lived particles: DM candidates

WIMPs

- $g \sim g_{\rm Weak},~M \sim {\rm TeV:}$ roughly the right amount of DM

- Weak scale (\sim TeV) theoretically motivated
- However, g^4/M^2 may be achieved otherwise (WIMPless Miracle)

Feng and Kumar, 2008

- WIMPs: the main focus of DM searches
- DAMA/LIBRA, CDMS, Xenon10, CDMSII, Xenon100, LUX, Fermi GST...

Direct WIMP DM Searches

E. Aprile et al. [XENON Collaboration], Phys. Rev. Lett. 121, no. 11, 111302 (2018)

• General feature: $m_{\rm DM} \lesssim$ few GeV poorly constrained (low recoil energy)

Other avenues for WIMP search:

- Indirect searches: self-annihilation signals
- Related to thermal relic density
- Complicated by astrophysical backgrounds

- Collider production: LHC
- Search for missing energy in events

Dark Sectors and Dark Forces

- DM may reside in a separate sector with its own forces
- Analogy with SM, a multicomponent sector
- Simple example: a "dark" sector $U(1)_d$
- ullet Mediated by vector boson Z_d of mass m_{Z_d} coupling g_d
- Interaction with SM: dim-4 operator (portal) via mixing

• $m_{Z_d} \lesssim 1$ GeV has been invoked in various contexts

• DM interpretation of astrophysical data Arkani-Hamed, Finkbeiner, Slatyer, Weiner, 2008

• Explaining 3.5 σg_{μ} - 2 anomaly: $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} = 276(80) \times 10^{-11}$ Fayet, 2007 (direct coupling) Pospelov, 2008 (kinetic mixing)

Invisible Z_d and Low Mass DM Production

- Possible production and detection of DM beams in experiments
- p or e on fixed target \Rightarrow production of boosted Z_d (meson decays, bremsstrahlung,...)
- Z_d beam decays into DM which can be detected via Z_d exchange
- Event rate depends on $lpha_d \equiv g_d^2/(4\pi)$ and $arepsilon^2$

Batell, Pospelov, Ritz, 2009 (p beam); Izaguirre, Krnjaic, Schuster, Toro, 2013 (e beam dump)

Interesting probe of GeV-scale DM (challenge for direct detection)

A. A. Aguilar-Arevalo *et al.* [MiniBooNE Collaboration], Phys. Rev. Lett. **118**, no. 22, 221803 (2017)

"Dark Matter Search in a Proton Beam Dump with MiniBooNE" Solid line: quark/nucleon coupling; Dot-dashed: electron coupling; χ : scalar DM

Concluding Remarks

Standard Model and GR successfully describe wide range of phenomena.

- Higgs discovered at LHC, appears to conform to and complete SM
- \bullet The "no-lose" theorem $\lesssim 1~\text{TeV}$ for SM; no "guarantees" henceforth

SM conceptual difficulties: hierarchy (Higgs mass "naturalness"),...

- No firm evidence for any of the associated proposed physics
- Perhaps still early, but new organizing principles may be needed

Empirical shortcomings: neutrino masses, dark matter, baryogenesis, . . .

- Neutrino masses: requires physics beyond SM, but typically elusive
- Dark matter: robust evidence for new physics, potentially accessible
- Wide range of possibilities at this point
- WIMP dark matter: Motivated by "naturlaness" of m_H (under strain)