

Using Gravitational Lensing to measure Dark Matter and Dark Energy in the Universe

Erin Sheldon

Brookhaven National Laboratory

July 16, 2019

About This Lecture

- ▶ The target audience is students who have taken an intro-level physics class at university.
- ► I'm also relying on some information the intro to cosmology by Paul Stankus. But if you were not there, that's ok, feel free to ask a question.
- My goal is to introduce basic concepts and give some examples
- I encourage questions. I don't care if I get through all of the material
- ► In the interest of pedagogy, I ask those in the room with PhDs to please refrain from commenting or asking advanced questions :)

Outline

- Very brief introduction to cosmology
 Introduction to Gravitational Lensing
 How we have about cosmology using long
- ► How we learn about cosmology using lensing
- ► Some examples

Introduction to Cosmology

- I'm building off of Paul's lecture on cosmology.
- I'll focus on the main topics pertaining to lensing

What Makes Up the Universe?

- Particles people planets – stars – galaxies
- What is the composition of distant objects?
- ▶ What is the mass density of the universe?
- What fraction of the mass in the universe is dark matter?

DES/Erin Sheldon

How is matter distributed?

Where are the galaxies and dark matter in the universe, over large scales?

Hubble UDF

SDSS Galaxy Locations (M. Blanton)

What is the history of the universe?

- The universe is expanding. Galaxies farther away from us moving away faster and their light is redshifted
- That is our view, but you would see the same thing from any other galaxy in the universe
- We can get an estimate of distance from the velocity/redshift.
- Because we see these galaxies as they were far back in time, the history is tied to the question of where things are.

What is the history of the universe?

- We expected the expansion to decelerate.
- ► The measurements indicated it *did* decelerate for a long time, but then began to accelerate!
- This mystery is called Dark Energy

Model of the expansion history (WMAP)

The Big Mysteries We Want to Study

- What is the Dark Matter? Where is it and how much is there?
- What is the Dark Energy? What are its properties and how much is there?

Gravitational Lensing

HST/NASA

Gravitational Lensing

 Gravitational lensing is the apparent bending of light rays as they pass massive objects

Gravitational Lensing Compared To Ordinary Lensing

 Similar in that the magnification depends on the curvature of the lens and the distances.

$$\frac{1}{o} + \frac{1}{i} = \frac{1}{f}$$
$$m = \frac{i}{o}$$

Halliday and Resnick

Gravitational Lensing Compared To Ordinary Lensing

- Difference: The effect is strongest for paths that go through the center of the lens (near the object)
- Difference: The image is not inverted
- Difference: Gravity is a long range force, so the effect is present even for paths far from the lens.
- Difference: When the rays pass near the center, you can see multiple images and rings even for simple lenses.

Halliday and Resnick

First Known Gravitational Lens: Two images of the same object (QSO 0957+0561, image HST/NASA)

- ► The effect depends on the mass of the lens: we can measure the mass of the lensing object!
- Lensing is especially useful for measuring dark matter. The lensing effect is present even if we can't see the mass.

- The effect depends on distances from observer to lens and between lens and source.
- We can use lensing to infer distances.
- Farther distance means farther back in time, so we can probe the expansion history of the universe and measure the effects of Dark Energy

- ► In practice lensing is basically sensitive to distance *ratios*, but that's useful as well.
- ► This shows how strong the lensing effect is for sources at different distances behind the lens

Practical Lensing Measurements

- ► These examples I've shown are extremely rare. Not that useful in general.
- But all objects in the universe are lensed by something. The effect is just small.
- We can use this pervasive "weak lensing" effect to measure the distribution of mass throughout the universe.

Dark Energy Survey, color image E. Sheldon

Weak Lensing

- A ray of light always looks like it came from a larger angle offset from the lens.
- But we don't know the original location, so that displacement isn't generally useful.
- However, rays are generally displaced radially, so the images of background galaxies get stretched a bit.
- This stretching we can measure, because it is coherent: all the galaxies get stretched tangentially around the lens, making a pattern.

Weak Lensing

- We can measure the stretching pattern of galaxies.
- ▶ But the effect is *super* weak. And galaxies are not round anyway, which is like extra noise on the measurement.
- We need to measure the ellipticities of millions of galaxies and look for *correlations* in their ellipticities.

What Theory Predicts

- ▶ The theory is gravity (general relativity) with dark matter, dark energy, and normal matter.
- ► The theory can predict (among other things):
 - ► How the universe expands over time.
 - ► How the light from distant galaxies is redshifted
 - ► How the matter within the universe reacts to gravity, known as "clustering".

What Theory Predicts

► How the universe is expanding

- For two given galaxies, the distance between changes over time $|\Delta \vec{r}(t)| = |\vec{r_1} \vec{r_2}|(t)$
- The relative velocity between galaxies is larger for more separated galaxies
- How the light from distant galaxies is redshifted $z(|\Delta \vec{r}|)$
- ► How the matter within the universe reacts to gravity over time. Gravity pulls matter together, and the density field in the universe evolves $\rho(\vec{r}, t)$

Gravity Pulls Everything Together: Clustering

Show Movie Mellenium Simulation

What Theory Predicts

- Expansion history: $|\Delta \vec{r}(t)|$
- ► Redshift: $z(|\Delta \vec{r}|)$
- ► Density evolution: $\rho(\vec{r}, t)$
- ► Recall from Paul's lecture: Ω_m and Ω_{Λ} were basic parameters in the Freedman Equations describing the expansion of the universe.
- ► Using these measurements we can learn about the mean mass density in the universe Ω_m
- ► We can learn about the properties of dark energy, for example the density Ω_{Λ}

Distance, Redshift and Density

- ▶ The theory doesn't predict our particular universe
- \blacktriangleright The theory predicts *statistics* about these quantities
- ▶ Given the mean and variance of the mass density field, and the density of dark energy, it can predict
 - ► $\langle |\Delta \vec{r}(t)| \rangle$: Averaged over a large number of objects ► $\langle z(|\Delta \vec{r}|) \rangle$
 - $\langle \rho(\vec{r_1})\rho(\vec{r_2})\rangle \propto \xi(|\vec{r_1} \vec{r_2}|)$: Correlation function

Correlation Functions

- ► The theory predicts the correlation function of dark matter $\langle \rho(\vec{r_1})\rho(\vec{r_2})\rangle \propto \xi(|\vec{r_1} \vec{r_2}|)$
- For example, if a point in the universe has high density, a nearby point probably also has high density. Similarly for low density points.
- So there should generally be a positive correlation but it will decrease for points with larger separation.
- The amplitude increases over time because gravity pulls matter together, making it more spatially correlated

SDSS Galaxy Locations (M. Blanton)

Dark Matter Correlation Function

- ► The theory predicts the correlation function of dark matter $\langle \rho(\vec{r_1})\rho(\vec{r_2})\rangle \propto \xi(|\vec{r_1} \vec{r_2}|)$
- Depends on the mean density and variance of the matter in the universe
- Evolution also depends on the dark energy
- Galaxies are only located at the highest density points, not ideal. But we can measure this better using gravitational lensing

Dark Matter Correlation Function

- The lensing from foreground masses causes correlations in the ellipticities of background galaxies
- We can measure the correlation function in the ellipticity $\langle e(\vec{\theta_1})e(\vec{\theta_2}) \rangle$
- Because the correlations in the ellipticities are caused by mass, this is closely related to the correlation function of the mass, which is what the theory predicts $\langle \rho(\vec{r_1})\rho(\vec{r_2}) \rangle$

Dark Matter Correlation Function

- We can do a special measurement where we look specifically around foreground objects, rather than just correlating all shapes
- Then we measure the mean amount of mass in the lens, for example galaxies.
- Can we measure the dark matter in galaxies?

- Plus, with lensing we can re-measure the signal for objects at different *redshifts* learn about their *distances* from us.
- This is especially useful for studying Dark Energy

Dark Energy Survey

- We perform weak lensing measurements using data we take with the Blanco telescope in Chile
- We built a new camera specifically to do weak lensing and study Dark Energy

Blanco Telescope in Chile (D. Lang)

Dark Energy Survey

- We perform weak lensing measurements using data we take with the Blanco telescope in Chile
- We built a new camera specifically to do weak lensing and study Dark Energy

Blanco Telescope in Chile (B. Nord)

Dark Energy Survey (E. Sheldon)

Dark Matter in Galaxies

- Measure the correlation of ellipticities with positions of galaxies
- ► If all the mass were in stars only, the curve would be much steeper on small scales
- On large scales the signal is due to nearby objects, but the amplitude is way too high if the mass were only from stars
- In excellent agreement with prediction of cold dark matter theory

E. Sheldon

Weak Lensing Shear Correlation Function

- ► Now just correlate the shapes, don't look around specific points $\langle e(\vec{\theta_1})e(\vec{\theta_2}) \rangle$
- ► Recall this is realted to the correlation function of the density field $\langle \rho(\vec{r_1})\rho(\vec{r_2})\rangle \propto \xi(|\vec{r_1} \vec{r_2}|)$

Dark Energy Survey

Weak Lensing Shear And Cosmology

- DES constrains Ω_m , Ω_Λ and the mass variance very well.
- Agrees with the cosmic microwave background.
- Combining the two is even better.

Dark Energy Survey

Weak Lensing Shear And Cosmology

- ▶ What about Dark Energy?
- If it is vacuum energy, we expect the density to be simply related to the pressure: $p = -\rho$.
- To test if it is different, we can try to measure $p = w\rho$, then measure w.
- So far it looks close to w = -1. Mostly informed by other data.

Dark Energy Survey

Weak Lensing Shear And Cosmology

- At the end of this year we will have results from a lot more lensing data from DES
- We will be able to say more about *w* independent of other experiments.

Dark Energy Survey

Summary

- Lensing is a powerful tool to measure mass in the universe
- We can test our theory of the universe and measure the detailed properties of dark matter and dark energy.
- Expect exciting results in the near future!

DES/Erin Sheldon