

Tracking software tools for EIC PID community & related topics

Alexander Kiselev EIC PID Workshop Stony Brook July,9 2019

Contents

- Requirements
- Existing solutions
- Future plans
- Discussion?

What does PID need from tracking?

- Track fits and parameterization at various locations
 - Forward RICH
 - Backward RICH
 - DIRC

- Vertexing (charm)
- Path length estimates (ToF)
- Estimates of magnetic field distortions (forward RICH)

General purpose detector concepts

-> software frameworks are strictly bound to the detector concepts

Existing software

EicRoot example #1: basic forward tracker

<u>Which momentum resolution for 10 GeV/c pions will I get</u> in ~3T field with 10 MAPS layers at $\eta=3$?

- Configurable geometry, material budget & resolutions
- Complete Kalman filter track fit

-> see examples/tracking/config.1 directory for details

EicRoot example #2: vertex+barrel tracker

Consider now vertex tracker + TPC in 3T field; shoot 10 GeV/c pions at 0=75°

343 total

[ayk@spb config.2]\$

Momentum resolution

-> see examples/tracking/config.2 directory for details

EicRoot: modular geometry

- TPC completely replaced by 6 layers of cylindrical micromegas
- No-structure GEM disks in the endcap

 TPC with reduced outer radius is just appended by few micromegas layers

-> reconstruction codes will work the same way as before once respective ROOT steering scripts modified accordingly

EicRoot: BeAST momentum resolution

fun4all: a complete software suite

Fully developed G4 model, including digitization and reconstruction

by Chris Pinkenburg

fun4all: case study examples

χ² / nd

10

100.6 / 113

EmCal Hadron Rejection

Hadronic Calorimeter Test Beam

Contains all you need to simulate and analyze data NOW

by Chris Pinkenburg

RECONSTRUCTION CHAIN (FOR LDRD)

This chain has been developed to validate tracking and vertex parameters and was used for JLAB LDRD- 1601/1701 project ("Nuclear gluons with charm at EIC") to estimate a detector effect on a charm reconstruction. (Many thanks to "software consortium", especially to Whitney Armstrong, for ideas and discussions)

Silicon tracker Simulation Tools

LiC Detector Toy enables fast, initial optimizations of tracking detector configuration concepts

- Originally developed for ILC studies (Regler et al, 2008),
- Helix track model,
- Multiple scattering,
- Full track reconstruction from digitized hits using a Kalman filter.

Successfully used by eRD16 for their thin silicon (MAPS) efforts, (being) extended to vertexing and timing studies.

Path forward: Docker containers

eRD20 container project

Container technology

- **Container** := very lightweight Virtual Machine
- Main players
 - Docker industry standard, requires admin privilege on host
 - **Singularity** standard on OSG, can run entirely in unprivileged mode
 - **Shifter** (NERSC only)

Benefits for EIC user community

- Allow EIC users to run the same software under standardized environment on any Linux, Mac OS or Windows machine, eventually including GRID sites, commercial cloud systems, and HPC resources
- Provide consistency between software generated at different facilities
- Make it easier for new users to start working on the physics program and detector design for the EIC, by minimizing the pain of "installation overhead"

Community document draft released few weeks ago by D. Blyth (ANL), W. Deconinck (William & Mary), MD (Jlab), A. Dotti (SLAC), AK (BNL), and **D. Lawrence (JLab)**

eRD20 container repository on GitLab

Source files for generating EIC containers are available: https://gitlab.com/ESC

eRD20 container images on Docker cloud

https://cloud.docker.com/swarm/electronioncollider/repository/list

Generic base image

based on CentOS 7 includes: ROOT 6 • Docker Cloud - Mozilla Firefox Geant4 10.3.3 🖊 ESC / containers · Gi... 🗴 < Search - Docker Hub 🛛 🗴 📃 ESC Containers - Go... 🗴 Docker Cloud CLHEP 2.3.4.5 • support for OpenGL graphics docker cloud Repositories Swarms BETA eRHIC software Docker Hub Filter by name... EicRoot \bigcirc electronioncollider/eic JLEIC software \bigcirc electronioncollider/eicroot GEMC electronioncollider/jleicgx \bigcirc

Does it work in general? YES!

- □ Initial simulation Investigates central tracking system consisting of silicon vertex detector and cylindrical µRWELL operating in µTPC mode within EicRoot.
 - $\circ \mu$ TPC mode will allow reconstruction of Z track and could reduce material budget from more traditional central tracking solutions.
- □ Silicon vertex detector

• Four silicon layers each with X-Y pixel resolution of 20 μ m – 20 μ m Cylindrical μ RWELL Barrel Tracker

Does it work in general? YES!

 Impact of the outer forward GEM detectors on seeding the RICH ring reconstruction in BeAST geometry

by Matt Bomberger

by Dmitry Romanov, David Lawrence & others (JLAB)

Overview

(1) MC events
(2) Digitized hits + magnetic field + material distribution
(3) Reconstructed events

Software distribution

NO EFFORT AT ALL Novice Some effort Experts

Efforts required axis

User interface

Workflow oriented interactive environment based on Jupyter

Community reference reconstruction

e^{JANA} - stands for EIC JANA

- Basic reconstruction ۲
- Physics analysis •
- **Users detector codebase** • integration

Any existing C++ (or even others) code can be:

- compiled as JANA plugin
- run parallelized in eJANA
- accessed by other plugins

Reconstruction

- Tracking Genfit
- Vertex finding Rave
- Physical analysis:
 - ROOT C++ or
 - Python data science tools (Jupyter, Seaborn, Pandas, etc)

Geant 4 EIC

- The codename g4e stands for Geant 4 EIC
- Beta stage
- √s 100 GeV design is implemented
- Imports CAD, accelerator group data
- Exports final Geometry in various formats
- Plain flattened analysis ready ROOT files

For those who prefer scripting over compilation **Geant 4 python** can be used

JANA(2)

by David Lawrence

JANA(2)

- Provide mechanism for many physicists to contribute code to the full reconstruction program
- Implement multi-threading efficiently and external to contributed code
- Provide common mechanisms for accessing job configuration parameters, calibration constants, etc...

	Analysis / Event Reconstruction				
dRICH	general: standalone c++ and ROOT Input: GEMC root file and Fun4All root file, others can be supported Algorithm: Inverse Ray Tracing algorithm in c++ class Future: easy integration for any c++ based framework				
mRICH	 general: standalone c++ and ROOT Input: GEMC root file, others can be supported Algorithm: Hough Transform Algorithm in c++ for simple study Likelihood Analysis in c++ for real experiments Future: easy integration for any c++ based framework 				
DIRC	<pre>general: standalone c++ and ROOT Input: customized root file, others can be supported Algorithm: geometrical reconstruction, time-based imaging Future: easy integration for any c++ based framework</pre>				
psTOF	<pre>general: standalone c++ and ROOT Input: Fun4All root file, others can be supported Algorithm: Time reconstruction parametrized from data, path-length using Runge-Kutta in a Kalman-Filter track fit in c++ Future: easy integration for any C++ based framework</pre>				

	Simulation				
	Generic Geant4	GEMC	Fun4all	eicROOT	
dRICH		for JLEIC and PHENIX	planned		
mRICH	S	for JLEIC	for sPHEND	in progress	
DIRC	Full setup prototype	planned	planned	straightforward (from FairROOT)	
psTOF			for sphenix GEANT4 simulation of sphenix		

Conclusions

- Some "tracking for PID" tools do exist: help yourself & use them (or ask experts to provide the tracking estimates)
- Write & contribute your own detector component codes ...
- ... but be aware that EIC software paradigm may change in the near future

EIC timelines

- 2015 NSAC (NP) Long-Range Plan:
 - "We recommend a high-energy high-luminosity polarized EIC as the highest priority for new facility construction."
- 2018 NAS review:
 - "The committee finds that the science that can be addressed by an EIC is compelling, fundamental and timely."

- President's budget request for FY2020:
 - Critical Decision-0, Approve Mission Need, is planned for FY2019

Main detector magnet

- Prefer open solenoid with a large (3T) field:
 - ideal for a TPC
 - sufficient B*dl integral at $|\eta| \approx 3.0..3.5$
 - almost azimuthally-symmetric acceptance
 - minimal adverse effect on the electron beam
 - no passive material in the acceptance
- However:
 - too high low-momentum particle cutoff
 - large inhomogeneous fringe field ...
 - ... causing severe problems for the gaseous RICH ...
 - ... which one can try to mitigate by shaping up the field
 - large stray fields, which may require clamping ...
 - ... therefore causing field degradation in the RICH ...
 - ... and large asymmetric forces on the support system
 - photo-sensors do not like magnetic field in general ...
 - ... and there is a huge difference between say LAPPD performance in 1.5T and 3.0T magnetic field ...
 - ... but modern MCPs with <10μm pores may work well?</p>

