BNL ASICs: Waveform Sampling, and Charge Processing

Microelectronics at BNL

- Since early '90, microelectronics at BNL successfully developed **over 50 state-of-the-art ASICs** with a wide range of impact and is especially renowned on:
 - Low-noise low-power front-end optimized for high charge-, spatial-, and timing-resolutions;
 - **Cold electronics** (enabling HEP large-scale cryogenic detectors);
 - **High functionality ASICs** (> 100,000 transistors per channel including analog front-end, mixedsignal ADCs, and digital processing for ATLAS upgrade).

A major challenge is how to efficiently respond to the increase in demand, functionality and complexity

Review of ASICs Developed at BNL

Year	ASIC Families	Collaborator	Publications	Impact areas
1996-1999	ATLAS family	ATLAS	*	Particle Physics
1996-1999	RHIC family	RHIC	*	Nuclear Physics
1997-2001	CreV family	eV Products	*	Nonproliferation, Medical Imaging
2000-2004	HERMES family	NSLS	*	Energy Sciences, Light Sources, Medical Imaging
2001-2009	PDD family	eV Products	*	Energy Sciences, Light Sources
2002-2003	CPG1 ASIC	LANL	*	Nonproliferation
2003-2004	LEGS TPC ASIC	Physics	*	Nuclear & Particle Physics
2005-2008	CPG2 ASIC	eV Products	*	Nonproliferation
2005-2007	SNS He ³ ASIC	ORNL	*	Energy Sciences
2005-2007	Multiwindow ASIC	eV Products	*	Nonproliferation, Medical Imaging
2005-2008	RATCAP ASIC	Medical	*	Medical Imaging, Neuroscience
2006-2011	H3D family	DoD, UMich	*	Nonproliferation, Medical Imaging
2006-2016	Compton Imager ASIC	NRL, NASA	*	Nonproliferation, Energy Sciences
2006-2010	LUNAR family	NSLS, NASA	*	Energy Sciences, Light Sources
2010-	DUNE front-end ASIC	Physics	*	Particle Physics
2011-	DUNE ADC ASIC	Physics	*	Particle Physics
2011-	ATLAS VMM family	Physics	*	Particle & Nuclear Physics
2014-	MARS family	NSLS	*	Energy Sciences, Light Sources
2014-	HEXID 2D family	NSLS, NASA, SBU, WUSTL, RMD	*	Energy Sciences, Light Sources
2015-	Ge family	LBNL, LANL	*	Particle Physics, Energy Sciences, Nonproliferation
2015-	H3DD family	DoD		Nonproliferation, Particle & Nuclear Physics
2015-	ATLAS HLC ASIC	Physics	*	Particle Physics
2016-	SAR ADC ASIC	Physics		Particle Physics, Energy Sciences
2016-	LDO regulator	Physics		Particle Physics, Energy Sciences

Developing Front-End Readout ASICs: Increased Functionality and Complexity

4

LAr ASIC Anti-aliasing filter: bandwidth, Nyquist rate, sampling frequency Oversampling: $M=f_N/f_{NR}=f_S/4f_{3db}$ = Nyquist frequency/Nyquist rate

Accuracy of charge information in the samples vs oversampling

Oversampling $M = f_s/f_N = f_s/2f_{3db}$ = sampling frequency/Nyquist frequency

[Courtesy: V. Radeka]

1.0 Induced current 8.0 I_{in}(t) for point charge 0.6 0.4 0.2 0.0 1.0 $i_{out}(t) = i_{in}(t) * h(t)$ *t_p*=2µs ● M=2 0.8 • M=1 0.6 0.4 0.2 0.0 624 626 628 630 622 620 0.5µs

 $\Delta q/q = \left[\sum_{i_{out(i)}} - \int i_{out}(t) dt\right] / \int i_{out}(t) dt = \text{charge(area) error}$

The sampling frequency is 2MS/s for both $t_p=0.5\mu$ s and $t_p=1\mu$ s (1MS/s for every other sample at $t_p=1\mu$ s). The Nyquist rate is ~500 kHz at 1 µs peaking time and ~1MHz at 0.5 µs. The sum of samples area error is less than ~0.1% in all cases, and less than ~0.03% for M=2 ($t_p=1\mu$ s and 2MS/s).

Example: Induced Current & Charge Simulations in GEANT4 w/ Laplace Solver

Si detector @ 60um pitch, 300nm thickness

Analog 3D PSD Technique - H3D ASIC

• H3D ASIC measures peak amplitude and relative timing on each signal (*Prof. Z. He*)

[G. De Geronimo_TNS2008]

Digital 3D PSD Technique - H3DD ASIC

H3DD ASIC measures whole
waveform on each signal

• Waveforms are analyzed with powerful signal processing techniques, thus achieving **higher resolution** (*Prof. Z. He*)

Digital 3D PSD technique – H3DD ASIC

[A. D'Andragora_Apr. 2018]

•H3DD ASIC measures whole waveform on each signal

- •Waveform is digitally sampled and stored
- •Advanced algorithms can extract information from the stored data

•Waveforms can be analyzed with powerful signal processing techniques, thus achieving higher resolution

H3DD Channel Architecture

- energy resolution < 1 keV
- energy range up to 9 MeV
- dynamic range up to 10,000
 - from dual-gain architecture
- programmable gain
- programmable anti-aliasing filter
- low-noise event discrimination

- high-resolution waveform sampling
- record depth up to 256 samples
- programmable pre- and post-trigger
- sampling rate up to 200 MS/s
- readout rate up to 100 MS/s
- multiple trigger and readout modes
- power dissipation ~1.7 mW/channel

ASIC Architecture

FE-SOC: ASIC for ATLAS Muon Spectrometer

Overall DAQ System of the VMM

LABORATORY

Brookhaven Science Associates

VMM3a digital mode:

- 38 bit data (2 serial lines): 1b flag, 1b thr (hit/neighbor), 6b addr, 10b peak, 20b time (8b TAC + 12b memory)
- max. event rate: 4MHz/ch (~250ns: conversion time 200ns+), 64-deep latency FIFO for 16us hits (250ns *64)
- readout time per ch: 19b * 6.25 ns = 120ns
- two serial lines at 160MHz with Double Date Rate => 640 Mb/s

Figure 11: Data Readout with ADCs (continuous mode, 1 bit/ck).

Two-Dimensional, Pad Detector for Neutron Scattering

1000

750

500

250

0

0

No. of Counts

³He + n \rightarrow ³H + p +764keV (~ 5 fC, or ~ 30k electrons)

Array of 4×4 pad boards, comprising 37 k independent channels. Operation in ionization mode, i.e. unity gas gain, would not be not feasible without ASICs

 $1 \text{ m} \times 1 \text{ m}$ Detector for ANSTO

G. De Geronimo et al., TNS 54 (2007)

Instrumentation Division at BNL

<u>Staff:</u>

Approximately 45 total. About 14 scientists, 12 engineers, 11 technical.

Core Competencies:

<u>Semiconductor Detectors</u>: Silicon X- and gamma-ray detectors, silicon charged particle detectors, Si CCDs, germanium X- and gamma-ray detectors.

<u>Gas and Noble Liquid Detectors</u>: Micropattern gas detectors, noble liquid TPCs, noble liquid calorimetry, ³He based thermal neutron detectors.

<u>Electronics</u>: Low Noise ASICs, rad-hard electronics, digital signal processing, special printed circuit boards, high-density interconnect laboratory.

Lasers and Optics: Ultra-short photon and electron sources and

Mission:

To develop state-of-the art instrumentation required for experimental research programs.

Backup Slides

Brookhaven Science Associates

Resources

ASIC design - Mietek Dabrowski (Cryo FE, ATLAS FE) Shaorui Li (HEXID, Cryo FE, GE, LUNAR) Yuan Mei (SAR_ADC) Emerson Vernon (AVG, MARS, H3D) Wenbin Hou (SBU PhD, NCI, LDO_REG)

CAD tools and compuing A. Kandasamy

SEM laboratory, Optical metrology J. Warren, P. Takacs

Developed in close collaboration with detector scientists from different fields

Brook 262 Brook 20 Br

Design Complexity

~ 1-2 new designs/year, ~ 3-4 revisions/year

21

ASIC for Radiation-Hard High-Resolution X-ray Spectrometers

Brookhaven Science Associates

[S. Li & G. De Geronimo, IEEE TNS 2013]

0.5

0

1.5

Peaking tims (us)

2

12-bit 2MS/s SAR (Successive Approximation Register) ADC [Y. Mei_FEE2017]

• Both linearity (INL/DNL) and resolution (ENOB) are improved with *digital calibration* scheme!

Ultra-Low-Noise LDO Regulator in 65 nm for Cryogenic FE ASIC [W. Hou_NSS2018]

2-D ASIC Hi-Resolution X-ray Imager

- ~700,000 transistors in CMOS 130nm technology (1.2 V supply)
- \bullet 256 hexagonal channels at 250 μm pitch
- 3-side abuttable, with 33 I/O pins only on the right side
- Each channel includes:
- -low-noise charge amplifier (adjustable gain: 0.25, 0.5, 1 V/fC)
- -shaper (adjustable peaking time: 125, 250, 500, and 1000 ns) -baseline stabilizer
- -discriminator and peak-detector
- ~0.6 mW/channel
- Simulated ENC: ~ 11 electrons (@ 60 fF det. cap. & 6pA leakage per pixel)

⇒Limited area for low-noise low-power readout chain

⇒No direct address control of each pixel, relying on token passing

Simulated and Measured ENC versus Peaking Time

ASIC for Pixelated-Scintillator-Based X-Ray Detectors

[Li & De Geronimo_NSS 2018]

2/26/2019

Cryogenic ASICs (µBooNE, ProtoDune, SBND, DUNE)

Compton Imager ASIC for NRL

Revised ASIC for HPGe Strip Detectors [by W. Hou & G. De Geronimo]

Very Low Noise ASIC for Germanium Point-Contact Detector in LAr

- Large gain (~5000) of charge amplifier to lower noise contributions from later stages
- Adaptive continuous reset successfully avoid dead-time and switching noise in charge amplifier, and automatically adjusts to detector leakage current.
- Large bandwidth of anti-alias filter (AAF) to preserve 50ns pulse rise time

Germanium Hyperspectral Imaging Detector with Cold Electronics

- Develop a detector capable of recording the position and energy of a detected x-ray, with energies from a few keV to over 100keV.
- Need to design and characterize readout electronics capable of operation at a temperature of around 100K (-200C!) for germanium to provide excellent energy resolution. The goal of this proposal is to fabricate a monolithic Ge pixel array sensor and also develop a prototype cold ASIC.

2/26/2019

Ge strip detector system at the X-ray powder diffraction beamline (BNL