System design considerations for EIC detectors

Outline: • Design studies • Software • DAQ interface Mainly based upon EIC detector design study: <u>sPH-cQCD-2018-001</u>

Jin Huang (BNL)

Detector concepts

See also: P. Nadel-Turonski

sPHENIX-based EIC detector

2018 update: sPH-cQCD-2018-001 https://indico.bnl.gov/event/5283/

Tracking and PID detectors

Evolving upgrade concepts

arXiv:1501.06197 CD-1 approval Successful PD2/3 review

Letter of Intent for Forward Instrumentation at sPHENIX

The sPHENIX Collaboration June 1, 2017 To RHIC PAC 2017

NATIONAL LABORATORY

arXiv:1402.1209

Update: sPH-cQCD-2018-001

Jin Huang <jhuang@bnl.gov>

EIC PID workshop

eRD14 in sPHENIX, fsPHENIX, sPHENIX-EIC

Not shown here: gas RICH modeled with eRD6 HBD-RICH prototype, see talk <u>S. Torre, K. Dehmelt</u>

sPHENIX-EIC simulation reconstruction framework <u>https://github.com/sPHENIX-Collaboration/macros</u>

- Fun4All: single frameworks integrating simulation and reconstruction
 - Built for collider experiments from simulation to reco and analysis
 - Regularly processing PBs of data and billions-of-particle simulation and analysis in sPHENIX studies
- Add your module
 - For example, it would be easy to port over the DIRC G4 simulation
 - Then you can utilize the full detector reconstruction

7

Distribution of sPHENIX-EIC simulation

- Now the sPHENIX software + tool set available via singularity container
- Distributed via CVMFS to computing centers
- And available for download to use on laptop
- Daily updates and validations

https://github.com/sPHENIX-Collaboration/Singularity

Singularity container for sPHENIX

Singularity container for sPHENIX allow collaborators to run sPHENIX RCF/SDCC environment with sPHENIX nightly builds on your local computers or on external high-performance computing clusters.

This repository includes the instruction and local update macro for the sPHENIX Singularity container.

 Validations:
 updatebuild.sh
 --build=new
 build
 passing
 ,
 --build=root5
 build
 passing

 standard macros
 git
 tutorials
 git
 code reference
 Doxygen
 last commit
 june

Daily QA Check

- sPHENIX Continuous Integration automatically check every Pull Request and daily builds
- It will be useful to have such validation for PID detectors too
 - e.g. calorimeter is check from G4basics to jet reconstruction

https://github.com/sPHENIX-Collaboration/coresoftware/pulls?q=is%3Apr+is%3Aclosed

Radiation considerations

For discussion of relative radiation only. Absolute value need double check, consider very tentative

sPHENIX-EIC Simulation, Collision only, e+p, 20+250 GeV/c, eRHIC Pythia6 Radiation dose [rad] for 10 fb^-1, collision-originated fluence only

sPHENIX-EIC Simulation, Collision only, e+p, 20+250 GeV/c, eRHIC Pythia6 Min-1-MeV Charged particle fluence [N_/cm2] for 10 fb^-1, collision-originated fluence only 10¹¹ R [cm] 10¹⁰ 250 10[°] 10 200 10 10⁶ 150 10⁵ 10⁴ 100 10^{3} 10² 50 10 300 400 -300 -200 -100100 200 Z [cm]

sPHENIX-EIC Simulation, Collision only, e+p, 20+250 GeV/c, eRHIC Pythia6 Min-100-keV Neutron fluence [n/cm²] for 10 fb^-1, collision-originated fluence only 10¹ 250

1st year radiation dose (10 fb⁻¹) Note the dose would be order-magnitude higher at 10³⁴cm⁻²s⁻¹

Magnetic field considerations

- Had a long talk on magnetic field optimization for tracking+RICHs in eRD14...
- Gas RICH photo sensor near field coil, which could experience strong and varying-direction field
- mRHIC is further away and could be aligned to the field direction
- Field sensitivity studies see Talk <u>Y. Ilieva</u>

EIC: unique collider → unique real-time challenges

	EIC	RHIC	LHC → HL-LHC
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A$, $A + A$	p + p/A, $A + A$
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV
Bunch spacing	2-10 ns	100 ns	25 ns
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} ightarrow 10^{35} \mathrm{cm^{-2} s^{-1}}$
x-N cross section	50 µb	40 mb	80 mb
Top collision rate	500 kHz	10 MHz	1-6 GHz
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6
Charged particle rate	4M N _{ch} /s	60M <i>N</i> _{ch} /s	30G+ <i>N</i> _{ch} /s

- EIC has lower collision rate and event size is small \rightarrow signal data rate is low
- But events are precious and have diverse topology
- EIC luminosity is high, so background and systematic control is key

Rate in Geant4 full detector simulation Sum collision + beam gas

sPH-cQCD-2018-001: https://indico.bnl.gov/event/5283/ /Simulation: https://github.com/sPHENIX-Collaboration/singularity

e+p DIS 18+275 GeV/c $Q^2 \sim 100 \, (GeV/c)^2$

Beam gas event p + p, 275 GeV/c at z=-4 m

GEANT4-based detector simulation for DAQ simulation: tracker for example

sPH-cQCD-2018-001, https://indico.bnl.gov/event/5283/

Extract mean value/collision that produces average signal data rate and tails that produce the buffer depth and latency requirements

Raw data: 16 bit / MAPS hit

Raw data: $3x5 \ 10 \ bit / TPC \ hit$ + headers (60 bits)

3x10 signal hit / collision \rightarrow 0.2 Gbps @10³⁴ cm⁻²s⁻¹

- MAPS is vulnerable to beam background see later slides
- ALPIDE MAPS noise are low, expect 10⁻⁶ /pixel/strobe, 200M pixel, 3us strobe → ~1Gbps

Raw data: 3x5 10 bit / GEM hit + headers (60 bits)

Rate in Geant4 full detector simulation Sum collision + beam gas

sPH-cQCD-2018-001: https://indico.bnl.gov/event/5283/, Simulation: https://github.com/sPHENIX-Collaboration/singularity

- Tracker + Calo signal ~ 40 Gbps @ 10³⁴ cm⁻² s⁻¹ < sPHENIX peak disk rate
- Vac profile based on HERA experience (10-9 mbar) \rightarrow Overall ~ 1 Gbps @ 12kHz beam gas interaction, << EIC collision signal data rate
- Be great to include PID detectors too

Strategy for an EIC real-time system

- For the signal data rate from EIC (100 Gbps), we can aim for filtering-out and streaming all collision in raw data without a hardware-based global triggering
 - Diversity of EIC event topology \rightarrow streaming DAQ enables expected and unexpected physics
 - Streaming minimizing systematics by avoiding hardware trigger decision, keeping background and history
 - At 500kHz event rate, multi-µs-integration detectors would require streaming, e.g. TPC, MAPS

Requirement

- All front-end to continuously digitize data or self-triggering
 e.g. PHENIX FVTX, STAR eTOF, all sPHENIX trackers, any many prototypes in this workshop
- Reliably synchronize all front-ends and identify faults
- Recording all collision data (100 Gbps if raw)
- If needed, filtering out background with low signal loss (10⁻⁴?)
- Requiring reliable data flow \rightarrow control systematics:
- Low data loss rate $< 10^{-4}$ (?) and/or loss in a deterministic manor

Streaming DAQ enables expected and unexpected physics. Example:

- In 2016, surprising evidence of collectivity in p+p collisions [CMS, PLB 2016]
- Inspired search of QGP signatures in even smaller system, in e+p [ZEUS, QM18], and e+e systems [MOD, arXiv 1906.00489]
- As HERA data is limited by statistics and the available trigger at that time, such search could be naturally conducted at EIC e+p/A
- Key requirement is to collect large amount of high multiplicity events with minimal triggering acceptance bias, including low Q2 and diffractive events
- In LHC, such data are collected with streaming/local-triggered front-end + HLT of high N_{ch} events

17

In EIC, processing low-Q2 events naturally leads to streaming readout DAQ

- Full streaming readout front-end (buffer length : μs)
 - \rightarrow DAQ interface to commodity computing via PCIe-based FPGA cards (e.g. FELIX)
 - \rightarrow Disk/tape storage of streaming time-framed zero-suppressed raw data (buffer length : s)
 - \rightarrow Collision event tagging in offline production (latency : days)
- Why time-framed streaming readout?
 - Diversity of EIC event topology. Streaming minimizing systematics by avoiding hardware trigger decision, keeping background and history
 - At 500kHz event rate, multi-µs-integration detectors would require streaming, e.g. TPC, MAPS
- Why FELIX-like DAQ interface?
 - Deterministic transmission from FEE up to server memory, buffering and busy generation
 - \circ 0.5 Tbps x bi-direction IO, bridging μs -level FEE buffer length with ms+ DAQ network time scale
 - Interface with commodity computing via PCIe @ ~100Gbps
 - Distribute experiment timing and synchronization cross large system
 - Similar architecture have wide support in 2020+ for high throughput DAQ e.g. ATLAS, ALICE, LHCb, CBM, Proto-DUNE
- Why keep raw data?
 - EIC collision signal @ 100 Gbps < sPHENIX disk rate, it is affordable to disk-write all raw signal data
 - Allow time + special run needed for final calibration, followed by prompt reconstruction
 Filter out noise if needed

See also discussion on eRD23: SRO Consortium

Test stands: SAMPA for GEM trackers

Recent test beam in June 2019

Electronics considerations for PID

Streaming FEE choices

- Continuous digitizing ADC (e.g. SAMPA, various calorimeter fADC)
- Analog memory cells w/ self trigger (e.g. DRS4GLO, TargetX/SiREAD?, MAROC??)
- Leading + trailing edge TDC (e.g. TOFPET, HADES FPGA TDC)
- Sync and distribution of clock

sPHENIX 256-ch SAMPA FEE Applicable to MPGD Photon det. DRS4GLO

HADES RICH TDC backplane

Electronics considerations for PID

- With eRD14: it would be very useful to include actual PID detector rate in this study too.
- In streaming mode, detector noise are sensitive issue
 - e.g. Radiation damage of SiPM would be important

23

Ongoing R&D, BNL LDRD 19-026: Common development for Advanced DAQ

BROOKHAVEN NATIONAL LABORATOR

Summaries

- sPHENIX-EIC detector design study updated in 2018
 - Thanks for the many contributions from eRD14
- Software framework for sPHENIX-EIC detector supports detector integration
 - Supports from simulation to reconstruction, from conceptual design to final data analysis
- A streaming DAQ fits the unique environment and physics needs at EIC
 - We could support eRD14 evaluating streaming readout FEE and how it fits into EIC data stream

Extra Slides

Jin Huang <jhuang@bnl.gov> EIC PID workshop

26

What field shall we add in the forward? - Brain storm in the past few years

Design Family	Example	Passive piston	
Piston	 Passive piston (C. L. da Silva) Active piston (J. Huang, C. L. da Silva) Super conducting piston (Y. Goto) 	η=3 Passive Piston helping flux return at small angle 2cm ↓ Hiperco-50 Hiperco-50 49%Co+49%Fe alloy provide high field saturation (<2.25T)	
Dipole	 Forward dipole (Y. Goto, A. Deshpande, et. al.) Redirect magnetic flux of solenoid (T. Hemmick) Use less-magnetic material for a azimuthal portion of central H-Cal (E. Kistenev) 	Beam line magnetic field shielding, based on superconducting pipe.	
Toroid	Air core toroid (E. Kistenev)Six fold toroid (J. Huang)	6 Piece Toroid around beam pipe	
Other axial symmetric Field shaper	 Large field solenoidal extension (C. L. da Silva) Pancake field pusher (T. Hemmick) 		

EIC PID workshop

- Transverse field (B_T) provide azimuthal bending and therefore momentum resolution
- momentum resolution \propto (tracker resolution)/(spacing between stations)
 - Want max bending (and BT) in the middle of tracking region
 - Should keep three stations as far away as possible

Transverse field is directly related to shape of central longitudinal field:

Two way to optimize transverse field, B_T

- 1. Maximize inward B_T at sensitive region
 - Need a sneezing coil

0

- 2. Maximize outwards B_T at sensitive region
 - Need a coil with opposite field

BROOKHAVEN NATIONAL LABORATOR

Considerations for yoke and tracking designs

Optimal tracking configurations

- Measure sagitta with vertex optimal sagitta plane (not drawn) last tracking station
- Yoke after tracking space and conform with a |z| < 4.5 m limit (eRHIC machine/detector "truce" line)

Constant current

A good configuration forward tracking

- Central + forward yoke (hadron calo.)
- Last tracking station at z=3.0m 0

Forward tracking optimization

Using ϕ segmented GEM with resolution of R $\Delta \phi$ = 50 μ m

Magnetic bending Track of η=2.0, p=30 GeV

Tracker layout for max sensitivity Track of p=30 GeV

Forward tracking detector considerations

- Using variations of fringe magnetic field for forward tracking requires high position resolution (control linear term) and thin detector for the Sagitta plane (control the constant term)
- GEM detector is one good choice, however we are pushing it towards its limit (so far)
- MAPS type silicon sensor could work well in very forward region too, covering R~30cm disk around beam pipe

Momentum Resolution at high momentum limit

Jin Huang <jhuang@bnl.gov>

EIC PID workshop

32

Gas RICH - The Design

- Hadron ID for p>10GeV/c require gas Cherenkov
 - CF₄ gas used, similar to LHC_b RICH
- Beautiful optics using spherical mirrors
- Photon detection using Csl-coated GEM in hadron blind mode
 - thin and magnetic field resistant
- Active R&D:
 - Generic EIC R&D program
 - recent beam tests by the stony brook group

Courtesy : EIC RD6 TRACKING & PID CONSORTIUM

Field effect -

distortion for RICH

- Field calculated numerically with field return
- Field lines mostly parallel to tracks in the RICH volume with the yoke
- We can estimate the effect through field simulations

RICH

200

300

EMCal

400

A RICH Ring:

Photon distribution due to tracking bending only

Field effect – Radius uncertianty of RICH Ring

Quantify ring radius error

In the respect of PID: minor effect

Forward upgrade for sPHENIX

Forward jet \rightarrow origin of transverse A_N

New photon detector with MAPMTs mounted

New photon detector flange after installation of PMT backplanes

... and after installation of the first 396 MAPMTs

Close-up of MAPMTs mounted on backplanes

HADES RICH mirror with CaF window in front

photos by G. Otto, GSI

BNL detector concepts

See also TOSIDE, JLEIC concepts in last two talks [Repond, Heyes]

EIC: unique collider → unique real-time challenges

	EIC	RHIC	LHC → HL-LHC
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A$, $A + A$	p + p/A, $A + A$
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV
Bunch spacing	2-10 ns	100 ns	25 ns
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} ightarrow 10^{35} \mathrm{cm^{-2} s^{-1}}$
x-N cross section	50 µb	40 mb	80 mb
Top collision rate	500 kHz	10 MHz	1-6 GHz
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6
Charged particle rate	4M N _{ch} /s	60M <i>N</i> _{ch} /s	30G+ <i>N</i> _{ch} /s

- EIC has lower collision rate and event size is small \rightarrow signal data rate is low
- But events are precious and have diverse topology
- EIC luminosity is high, so background and systematic control is key

From Stream-III Workshop:

Collision signal data rate

sPH-cQCD-2018-001, https://indico.bnl.gov/event/5283/

- Details in simulation presented in last workshop (also in backup)
- Tracker + calorimeter ~ 40 Gbps
- + PID detector + 2x for noise ~ 100 Gbps
- Signal-collision data rate of 100 Gbps seems quite manageable,
 - < sPHENIX TPC peak disk rate of 200 Gbps

Beam-gas interactions

- As discussed in last workshop, EIC combine high luminosity and small signal x-section, and background control would be critical
- Beam gas interactions.
 - p + p (beam gas) cross section ~ 40 mb
- Beam gas interaction rate ~ 13kHz / 10m beam line < 10% EIC collision rate
- The following estimation assumes
 - HERA inspired flat 10⁻⁹ mbar vac in experimental region of |z|<450 cm

Vacuum pressure	10 ⁻⁹ mbar		
Beampipe temperature	Room temperature		
Average atomic weight of gas	Hydrogen (H ²)		
Molecular density (for 10 m pipe)	2.65 x 10 ¹⁰ molecules/cm ²		
Luminosity (Ring-Ring)	10.05 x 10 ³³ cm ⁻² s ⁻¹		
Bunch intensity (R-R) (e/p)	15.1 / 6.0 x 10 ¹⁰		
Beam Current (R-R) (e/p)	2.5 / 1 A		
Bunch spacing (Ring-Ring)	8.7 ns \rightarrow 1320 bunches		
ElectronxProton beam energy	10 GeV x 275 GeV		

Courtesy: E.C. Aschenauer eRHIC pre-CDR review

Beam gas event in a detector (upstream)

Simulation: https://github.com/sPHENIX-Collaboration/singularity

- 250 GeV proton beam on proton beam gas, sqrt[s] ~ 22 GeV
- For this illustration, use pythia-8 very-hard interaction event (q^hat > 5 GeV/c)

Beam gas event in a detector (downstream) Simulation: https://github.com/sPHENIX-Collaboration/singularity

- > 250 GeV proton beam on proton beam gas, sqrt[s] ~ 22 GeV
- For this illustration, use pythia-8 very-hard interaction event (q^hat > 5 GeV/c)

GEANT4-based data rate simulation: Beam gas event on tracker (more detectors in backup)

Extract mean value/collision (signal data rate) and tails (relates to buffer depth requirement)

Jin Huang <jhuang@bnl.gov>

EIC PID workshop

Rate summary for beam gas

- Very similar rate distribution among subsystems when compared with EIC collisions
- With an assumed vacuum profile (10⁻⁹ mbar flat within experiment region):
 - Overall few Gbps @ 12kHz beam gas at 10⁻⁹ mbar in |z|<450 cm (detector region)

Jin Huang <jhuang@bnl.gov>

Data rate: sum together

sPH-cQCD-2018-001: https://indico.bnl.gov/event/5283/ , Simulation: https://github.com/sPHENIX-Collaboration/singularity

- ▶ Total signal ~ 100 Gbps @ 10³⁴ cm⁻² s⁻¹ < sPHENIX peak disk rate
- Beam gas rate << EIC collision signal data rate</p>

BROOKHAVEN NATIONAL LABORATOR

Strategy for an EIC real-time system

- For the signal data rate from EIC (100 Gbps), we can aim for filtering-out and streaming all collision in raw data without a hardware-based global triggering
 - Also consider hybrid DAQ for EIC: possibilities for distribute triggers for calibration systematics control. e.g. trigger for laser calibration pulses, pedestal
- Requirement
 - All front-end to continuously digitize data or self-triggering
 e.g. PHENIX FVTX, STAR eTOF, all sPHENIX trackers, any many prototypes in this workshop
 - Reliably synchronize all front-ends and identify faults
 - Recording all collision data (100 Gbps if raw)
 - If needed, filtering out background with low signal loss (10-4?)
 - Requiring reliable data flow → control systematics: Low data loss rate < 10⁻⁴(?) and/or loss in a deterministic manor

FELIX-based DAQ

sPH-cQCD-2018-001 https://indico.bnl.gov/event/5283/

- Full streaming readout front-end (buffer length : μs)
 - \rightarrow DAQ interface to commodity computing via PCIe-based FPGA cards (FELIX)
 - \rightarrow Disk/tape storage of streaming time-framed zero-suppressed raw data (buffer length : s)
 - \rightarrow Collision event tagging in offline production (latency : days)
- Why time-framed streaming readout for collision data?
 - Diversity of EIC event topology. Streaming minimizing systematics by avoiding hardware trigger decision, keeping background and history
 - At 500kHz event rate, multi-µs-integration detectors would require streaming, e.g. TPC, MAPS
- Why FELIX-like DAQ interface?
 - Deterministic transmission from FEE up to server memory, buffering and busy generation
 - \circ 0.5 Tbps x bi-direction IO, bridging μ s-level FEE buffer length with ms+ DAQ network time scale
 - Interface with commodity computing via PCIe @ ~100Gbps
 - Distribute experiment timing and synchronization cross large system
- Why keep raw data?
 - EIC collision signal @ 100 Gbps < sPHENIX disk rate, it is affordable to disk-write all raw signal data
 - Allow time + special run needed for final calibration, followed by prompt reconstruction
 <u>Filter out noise if needed</u>

Front-End Link eXchange (FELIX)

- FELIX: DAQ interface card initially developed for ATLAS Phase 1 upgrade and beyond
 - Similar architecture have wide support in 0 2020+ for high throughput DAQ e.g. ATLAS, ALICE, LHCb, CBM, Proto-DUNE
- Future versions concepts supporting 48x 25Gbps transceivers and PCIe Gen4

NATIONAL LABORATORY

Exp. Hall DAO room FEE Serve FEE Serve COTS FEE Network Serve FEE & Serve Storage 48x 10-Gbps bi-directional 10/100 Gbps optical links per FELIX Network Timing

Timing

- All FEE & FELIX synchronized to collider collision clock
- Broadcast 64b-clock counter and validate synchronization
- Timing prototype
 - Zynq-based timing system board with multiple SFP+ links 0

FEE

Demonstrated SFP+ based timing link at 112.8 MHz 0

SFP+

Timing board (ZYNQ)

Streaming frontend

- Streaming ASIC in prototyping: ALPIDE, FPHX, SAMPA
- Generic SFP+ and Versatile link support
- sPHENIX version of SAMPA with 80ns-shaping in development
 - Based on ALICE development

80ns SAMPA components in testing

Analog + ADC data at USP

Online Storage

- Data buffer box
 - Average out data transfer: reduced rate and resilient to interruptions
 - Consist of multiple storage servers for write/transfer
- Existing server at RCF: Write test demonstrated ~50Gbps continuous memory → disk write-only speed for single server

COTS storage server, hosting ~100 disk slots

Courtesy: Martin Purschke (BNL)

Beam test: MAPS silicon tracker (on-going)

Supported by LANL LDRD

Readout Unit 4.5M pixel/RU

ALPIDE MAPS tracker in test beam

120 GeV p

Online monitoring of silicon hits

Jin Huang <jhuang@bnl.gov>

RHIC @ mid-2020s

See also: PHENIX silicon tracker with streaming front end DOI:10.1016/j.nima.2014.04.017

- > 2018: Cost/schedule review and DOE approval for production start of long lead-time items (CD-1/3A)
- PD2/3 review next week!
- > 2022 installation, 2023: First data

Proposed eRHIC @ end of 2020s

Example: sPHENIX-based EIC detector

Tonko's estimation: Signal rate = 16*8 Gbps ~ 100 Gbps @ 10³³ cm⁻² s^{-1,} 200kHz collision **How about in G4:**

Tonko's estimation (2015) The eRHIC Detector ("BeAST") Readout Scheme

Detector	Bytes per track		
TPC	100 x (80+4+4) ~ 9000		
Silicon	7 x (4+4+4) ~ 90		
RICH	20 x (4+4+4) ~ 250		
EMCal	1 x (4+4+4) ~ 20		
HCal	1 x (4+4+4) ~ 20		
Total per track	9.4 kB		
For 1.7M tracks/s	(1.7M x 9.4 kB =) <mark>16 GB/s</mark>		

e+p collision 18+275 GeV/c DIS @ Q² ~ 100 (GeV/c)²

Jin Huang <jhuang@bnl.

Full detector "Minimal bias" EIC events in sPHENIX framework: quick first look

Multiplicity check for all particles Minimal bias Pythia6 e+p 20 GeV + 250 GeV 53 µb cross section

BNL EIC taskforce studies https://wiki.bnl.gov/eic/index.php/Detector Design Requirements

Based on BNL EIC task-force eRHIC-pythia6 55ub sample

pythia.ep.20x250.1Mevents.RadCor=0.root						
CKIN(3)	changed	from	0.0000	to	0.0000	
CKIN(4)	changed	from	-1.00000	to	-1.00000	

GEANT4-based detector simulation for DAQ simulation: tracker

sPH-cQCD-2018-001, https://indico.bnl.gov/event/5283/

Extract mean value/collision that produces average signal data rate and tails that produce the buffer depth and latency requirements

Raw data: 16 bit / MAPS hit

Raw data: $3x5 \ 10 \ bit / TPC \ hit$ + headers (60 bits)

3x10 signal hit / collision \rightarrow 0.2 Gbps @10³⁴ cm⁻²s⁻¹

- MAPS is vulnerable to beam background see later slides
- ALPIDE MAPS noise are low, expect 10⁻⁶ /pixel/strobe, 200M pixel, 3us strobe → ~1Gbps

Raw data: 3x5 10 bit / GEM hit + headers (60 bits)

Jin Huang <jhuang@bnl.gov>

GEANT4-based detector simulation for DAQ simulation: central calorimeters

Raw data: 31x 14 bit / active tower +padding + headers ~ 512 bits / active tower

sPH-cQCD-2018-001, https://indico.bnl.gov/event/5283/

GEANT4-based detector simulation for DAQ simulation: forward calorimeters

Raw data: 31x 14 bit / active tower +padding + headers ~ 512 bits / active tower

Beam gas multiplicity

- 250 GeV/c proton beam on H₂ gas target
- C.M. rapidity~3.1, sqrt[s] ~ 22 GeV, cross section~40 mb
- Lab per-pseudorapidity multiplicity is higher than e+p, but not orders of magnitude higher

65

Jin Huang <jhuang@bnl.gov>

Beam gas vertex sensitivity - tracker

- Average active hit for each beam gas vertex bin
- > 250 GeV proton beam on proton beam gas, Pythia-8 M.B.

Beam gas vertex sensitivity – calo.

- Average active hit for each beam gas vertex bin
- > 250 GeV proton beam on proton beam gas, Pythia-8 M.B.

GEANT4-based detector simulation: beam gas event on tracker

Extract mean value/collision (signal data rate) and tails (relates to buffer depth requirement)

Jin Huang <jhuang@bnl.gov>

EIC PID workshop

GEANT4-based detector simulation: beam gas event on central calorimeters

Raw data: 31x 14 bit / active tower +padding + headers ~ 512 bits / active tower

Jin Huang <jhuang@bnl.gov>

GEANT4-based detector simulation: beam gas event on forward calorimeters

Raw data: 31x 14 bit / active tower +padding + headers ~ 512 bits / active tower

Jin Huang <jhuang@bnl.gov>

Per-strobe ALPIDE multiplicity

Four factor contributes in a MC simulation:

- Per-collision multiplicity, PDF as in last page
- Number of pile up collision, Poisson distributed
- The triggered collision, |z|<10 cm (trigger mode only)
- Number of noise, Poisson distributed

Comments received:

- Duplicated hits between strobes are not included yet (Thanks to Jo)
- UPC electron background not included (Thanks to Xin)
- Aiming for 10⁻⁶ noise in final detector (Many)

p+p multiplicity, per-strobe, chip-4

- p+p collision related data is completely dominated by pile-ups
- Central limit theorem: High number of pile up \rightarrow low non-Gauss high tails
- Continuous-mode is quite safe @ 10-us strobe window

Au+Au multiplicity, per-strobe, chip-4

- Can we do better?
 - Further reducing collision rate to 50kHz by introducing a beam crossing angle
 - Reducing noise by 1/10 to 10⁻⁵ noise per strobe
- Still challenging for continuous , but plausible to have overflow dead-time < 0.1% further using multi-hit buffer on chip (eating the safety factor)

Timing distributions

- All PHENIX/sPHENIX FEE are synced to beam clock/counter. Expecting similar for EIC detector
- BNL-712/FELIX can receive clock of multiple protocols (SPF+, White Rabbit, TTC, ...) via a timing mezzanine card
- SI5345 jitter cleaner control jitter to <0.1 ps
- BNL-712/FELIX carries 48x 10 Gbps downlink fiber for control data to FEE. Beam clock and sync word can be encoded on fiber (e.g. 8b10b encoding)
- For EIC hadron beam RF, extra cautious need to be taken for hadron machine ramp from low gamma to high gamma, which leads to clock frequency variation [next slide].

TTC

TTTT(();/////////

NATIONAL LABORATORY

timing mezzanine cards

TTC-PON

White Rabbit

Device	SI5338	SI5345	SI5341			
Jitter (ps)	8.58	0.09	6.39			
Device	CDCM6208	LMK03200	LMK03033			
Jitter (ps)	2.06	5.91	2.74			
Device	CDCE62005					
Jitter (ps)	8.61					
The jitter from 10 kHz to 1 MHz						

Courtesy of Kai Chen (BNL)

Kai Chen - FELIX Design Review

Jin Huang <jhuang@bnl.gov>

Embedded clock demo with variable beam clock frequency

Jin Huang <jhuang@bnl.gov>

EIC PID WORKSHOP

75

Evolution of the RHIC 1008 Interaction region

		1
PHENIX experiment	SPHENIX	An EIC detector
 16y+ operation Broad spectrum of physics 180+ physics papers with 25k citations 1.4-M channel streaming 	 Comprehensive central upgrade base on previous BaBar magnet Rich jet and HF physics program → Microscopic nature of QGP 	 Path of PHENIX upgrade leads to a capable EIC detector Large coverage of tracking, calorimetry and PID Full streaming DAQ based on sPHENIX
	arXiv:1501.06197 [nucl-ex]	ArXiv:1402.1209 [nucl-ex]
~2000 2017-	\Rightarrow 2023. CD-1/3A Approved >2	Update: sPH-cQCD-2018-0 2025 Time
RHIC: A+A, spin-polarize	d p+p, spin-polarized p+A	EIC: e+p, e+A
BROOKHAVEN		

NATIONAL LABORATORY

eRHIC and JLEIC key parameters at max Lumi points

design	\mathbf{eRHIC}		JLEIC	
parameter	proton	electron	proton	electron
center-of-mass energy [GeV]	105		44.7	
energy [GeV]	275	10	100	5
number of bunches	1320		3228	
particles per bunch $[10^{10}]$	6.0	15.1	0.98	3.7
beam current [A]	1.0	2.5	0.75	2.8
horizontal emittance [nm]	9.2	20.0	4.7	5.5
vertical emittance [nm]	1.3	1.0	0.94	1.1
β_x^* [cm]	90	42	6	5.1
β_{u}^{*} [cm]	4.0	5.0	1.2	1
tunes (Q_x, Q_y)	.315/.305	.08/.06	.081/.132	.53/.567
hor. beam-beam parameter	0.013	0.064	0.015	0.068
vert. beam-beam parameter	0.007	0.1	0.015	0.068
IBS growth time hor./long. [min]	126/120	n/a	0.7/2.3	n/a
synchrotron radiation power [MW]	n/a	9.2	n/a	2.7
bunch length [cm]	5	1.9	1	1
hourglass and crab reduction factor	0.87		0.87	
peak luminosity $[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	1.05		2.1	
integrated luminosity/week $[fb^{-1}]$	4.51		9.0	

FEE data rate

Radiation map

sPHENIX-EIC Simulation, Collision only, e+p, 20+250 GeV/c, eRHIC Pythia6 Radiation dose [rad] for 10 fb^-1, collision-originated fluence only

ABORATORY

sPHENIX-EIC Simulation, Collision only, e+p, 20+250 GeV/c, eRHIC Pythia6 Min-1-MeV Charged particle fluence [N /cm²] for 10 fb^-1, collision-originated fluence only R [cm] 10¹¹ 10¹⁰ 250 10⁹ 10⁸ 200 10 10[€] 150 10⁵ 10⁴ 100 10^{3} 50 10² 10 -300 -200 200 300 400 -400 -100 0 100 Z [cm]

sPHENIX-EIC Simulation, Collision only, e+p, 20+250 GeV/c, eRHIC Pythia6

