

Modular Ring Imaging Cherenkov Detector for Particle Identification in the Electron-Ion Collider (EIC) Experiments Xu Sun

Georgia State University

Lens-based Focusing Aerogel Detector Design

Smaller, but thinner ring improves PID performance and reduces length

Lens-based Focusing Aerogel Detector Design

Smaller, but thinner ring improves PID performance and reduces length

Smaller, but thinner ring improves PID performance and reduces length

Beam Test of 1st Prototype

The 1st test beam result verified mRICH working principle and validated simulation

- 120 GeV proton beam test simulation matched with data perfectly
- Ring finder algorithm & 3" focal length & 6*6 mm pixel size
- Cheuk-Ping Wong et al., NIM A871 (2017) 13-19

2nd mRICH Prototype

- Longer focal length (6" Fresnel lens)
- Smaller pixel size sensors
- Test PID capability

TECHNICAL INFORMATION

OCT. 2016

FLAT PANEL TYPE MULTIANODE PMT ASSEMBLY H13700 SERIES

- High quantum efficiency: 33 % typ.
- High collection efficiency: 80 % typ.
- Single photon peaks detectable at every anode (pixel)
- Wide effective area: 48.5 mm × 48.5 mm
- 16 × 16 multianode, pixel size: 3 mm × 3 mm / anode

07/10/2019

Particle Identification Algorithm Development

1. Perfect circle image exists only when beam hit at the center. Used Hough transformation to find the ring image and provided the baseline for consistency checks on GEANT4 simulation and analytical results.

Particle Identification Algorithm Development

2. For other ring image forms (i.e., particles entering at off-center positions and angles), one needs to use log-likelihood method for determining ring image formation. Extensive simulation is required for generating image template database.

Projected mRICH Performance

- prototype detector (Green dots)
- 2nd prototype detector can achieve 3-sigma K/pi separation up to 8 GeV/c

Projected e/pi separation of mRICH 2nd prototype detector (**blue solid line**) 2nd prototype detector can achieve 3sigma e/pi separation up to 2 GeV/c

Data sets taken during the second mRICH beam test at Fermilab in June/July 2018

The major goal of the 2nd mRICH beam test data analysis is to **verify the PID** performance at 2, 5 and 8 GeV/c

Beam Test of 2nd Prototype

Fresnel Lens

Beam Test of 2nd Prototype

Beam Test of 2nd Prototype

First Ring

Beam Test Team

1st and 2nd Beam Test Comparison (120 GeV Proton Beam)

The 1st test beam result verified mRICH working principle and validated simulation

- 1st prototype 3" focal length & 6*6 mm pixel size
- 2nd prototype 6" focal length & 3*3 mm pixel size

Xu Sun-EIC PID Workshop

mRICH Ring Images from PMTs

Examples of cumulative ring images from the second mRICH prototype beam test

Left: ring images formed by 120-GeV primary proton beam incident on the center of mRICH. White gaps are the PMT frames. **Middle**: ring images from 120-GeV primary proton beam incident at an angle of 11° toward the lower section of mRICH. **Right**: images from an 8-GeV meson run. The challenge of this analysis is to determine the beam position since the beam hodoscope readout was not ready for this test.

Four Hamamatsu H13700 PMTs (3mm x 3mm pixel size; 16x16 channels) were used in these test runs. Each costs ~\$5k. These sensors will NOT work in high magnetic field!!!

mRICH Ring Images from SiPM Sensors (a FIRST!)

To meet the requirement of operating photosensors in high magnetic field in EIC experiment, we successfully demonstrated ring imaging construction using mRICH in the 2nd beam test. There were only three Hamamatsu SiPM matrices available at the time of this test. Given the limited beam time, we only took data with the primary proton beam at 120 GeV with cooling temperature settings at -30°C, -20°C, -10°C, 0°C and room temperature.

SiPM matrix assembly and Cooling setup

Cumulative ring images from 120 GeV/c proton beam at center

Ongoing effort: (a) photon hit timing structure; (b) noise level study; and (c) event-by-event ring image construction and fine tuning simulation.

TDC Signal Selection for Test Beam Analysis

- save mean & sigma of tdc
 tde cuts set to a sigma
- tdc cuts set to 2 sigma

- time = tdc_raising tdc_falling
- projection range is under investigation
- 2 sigma cut applied to test beam data

Time Duration for Test Beam Analysis

With 4 H13700 – PMT's

With 3 Hamamatsu SiPM matrices (-30°C)

120 GeV/c proton beam incident at the center of mRICH - baseline analysis

With 4 H13700 – PMT's

With 3 Hamamatsu SiPM matrices (-30°C)

- beam spot can be identified with a group of fired pixels in PMTs
- beam spot in SiPMs is less significant than PMTs

Baseline Performance as Expected

Xu Sun-EIC PID Workshop

mRICH in an EIC Detector Built Around the sPHENIX Solenoid

mRICH wall in hadron-going direction for hadron PID

sPHENIX-note sPH-cQCD-2018-001

An EIC Detector Built Around The sPHENIX Solenoid

A Detector Design Study

Christine Aidala, Alexander Bazilevsky, Giorgian Borca-Tasciuc, Nils Feege, Enrique Gamez, Yuji Goto, Xiaochun He, Jin Huang, Athira K V, John Lajole, Gregory Matousek, Kara Mattioli, Pawel Nadel-Turonski, Cynthia Nunez, Joseph Osborn, Carlos Perez, Raif Seidi, Desmond Shangase, Paul Stankus, Xu Sun, Jinlong Zhang

> For the EIC Detector Study Group and the sPHENIX Collaboration

> > October 2018

07/10/2019

Contents

The Electron-Ion Collider (EIC)

1.1	Realizing EIC as eRHIC	2
1.2 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5	Core Questions and Key Measurements The Longitudinal Spin of the Proton The Transverse Motion of Quarks and Gluons Inside the Proton The Spatial Distribution of Quarks and Gluons Inside the Proton Gluon Saturation in Nuclei Hadronization	2 3 5 5 6
2	Detector Concept	. 9
2.1	Use of sPHENIX components	10
2.2	The sPHENIX Solenoid and Magnetic Field	11
2.3 2.3.1 2.3.2 2.3.3	$\label{eq:charged particle tracking} Vertex tracker $$ Tracking in the central region, $-1 < \eta < 1$$ Tracking in forward (hadron-going direction, $\eta > 1$) and backward (election) of the provided of the pr$	12 . 12 . 13 tron . 15
2.4 2.4.1 2.1	Calorimetry Electromagnetic calorimetry	17 . 17 . 20
2.5 2.5.1 2.5.2 2.5.3	Particle identification Barrel DIRC Detector Gas and dual-radiator RICH Modular Aerogel RICH	22 . 24 . 24 . 27

vi 2.6 Far forward detectors 28 29 2.7 Data acquisition 3 Detector Performance 3.1 **Tracking Performance** 35 3.2 Jet Reconstruction 39 3.3 **DIS Kinematics Reconstruction** 42 3.3.1 3.3.2 3.3.3 3.4 Particle ID Coverage and Performance 49 3.5 53 Charm Tagging 3.6 **DVCS Reconstruction** 55 3.7 J/ψ Reconstruction 58 Δ

Xu Sun-EIC PID Workshop

Summary and Outlook

- The 1st test beam result verified mRICH working principle while the second established the PID capability
- Data analysis of the second mRICH beam test (ongoing effort).
- Study of radiation hardness of Fresnel lens.
- Simulation study of mRICH performance in the electron endcap of JLEIC and in the Forward sPHENIX experiments at BNL (ongoing effort).
- Organize a joint dRICH/mRICH beam test. Plan for an electron beam (~2 GeV/c) test.
- Optical characterization of Fresnel lens and aerogel block properties.

Thanks for your attention!

Backups

mRICH in EIC

π^+ mass hypotheses

- validate in PYTHIA simulation
- likelihood method is available for PID

800

Separation Power

- Separation power decrease with increasing polar angle
- 3 sigma separation up to 9 GeV/c when particle launched at the center of aerogel
- 3 sigma separation up to 8 GeV/c when particle launched at 10 degrees
- simulation will cover full phase space and use for future particle identification

Ring Radius

 Radius in data is slightly larger than simulation => due to sensor geometry

Number of Photons

- data shows more total photons
- photons on ring matched with simulation
- more photons from noise?

Time Duration for SiPMs

100

120

140

Time Duration On Ring

0.3

- time duration signal shows different patterns
- but hard to select on event level

20

40

60

80

time duration

0.002

0.001

Time Duration Cut for PMTs (

- time = tdc_falling tdc_raising
- projection range is under investigation
- 2 sigma cut applied to test beam data

Time Duration Cut for SiPMs

- time = tdc_falling tdc_raising
- projection range is under investigation
- 2 sigma cut applied to test beam data

Ring Image for Meson Run

