High-Performance DIRC for EIC

Greg Kalicy

Outline:

- Design and Simulation studies
- Developing and evaluating 3-layer lens
- hpDIRC prototype program

July 10th, 2019

hpDIRC

Geant4 simulation of High-Performance DIRC detector

hpDIRC Design

16 section design with one prism in each as expansion volume

GEANT4 visualization of the designs:

Greg Kalicy, July 10th, 2019

4

hpDIRC Narrow bar design

- Radiator bars
 - 17 x 35 x 4200 mm
 - 11 bars per box
 - 16 bar boxes, 1m from IP
- 3 component lens
 - 14 x 35 x 50 mm
 - radiuses: 47 mm, 29 mm
- Expansion volume
 - Prism with 38° opening angle
 - 285 x 390 x 300 mm
- Sensors
 - Pixelated (3 mm²)

Geant4 simulation of High-Performance DIRC detector

hpDIRC Hit Patterns

hpDIRC Hit Patterns

hpDIRC Performance goal

DIRC@EIC PID capability using geometrical reconstruction:

- π/K up to 6 GeV/c
- e/π up to 1.8 GeV/c
- p/K up to 10 GeV/c

Greg Kalicy, July 10th, 2019

8

π/K identification as a function of the θ_c resolution

hpDIRC Parametrisation for fast simulation

- A special C++ class was designed and released to the EIC software community
- Geant4 simulation of the current hpDIRC baseline design used to calculate the Cherenkov track resolution (CTR)
- The fast simulation returns the deviation of the smeared Cherenkov angle from the expected values in units of CTR
- The derived π/K separation power in standard deviations is a result of the fast reconstruction

10 nomentum [GeV/c] 1.8 9 1.6 1.4 1.2 0.8 0.6 0.4 0.2 40 60 80 100 120 140 polar angle [deg]

Geant4 simulated Cherenkov track resolution

hpDIRC Prototype 3-component lens

Limitations of standard focusing lenses:

- Significant photon yield loss around 90° particle track
- Aberration for photons with steeper angles

hpDIRC Prototype 3-component lens

Limitations of standard focusing lenses:

- Significant photon yield loss around 90° particle track
- Aberration for photons with steeper angles

hpDIRC Prototype 3-component lens

Limitations of standard focusing lenses:

- Significant photon yield loss around 90° particle track
- Aberration for photons with steeper angles

Spherical 3-layer lens prototype

Mapping focal plane of 3-layer lens:

 Lens holder designed to rotate in two planes for the 3D mapping of the focal plane and shifts of lens in horizontal plane.

L. Allison, R. Dzhygadlo, T. Hartlove, G. Kalicy, C. Schwarz

Mapping focal plane of 3-layer lens:

 Lens holder designed to rotate in two planes for the 3D mapping of the focal plane and shifts of lens in horizontal plane.

Spherical 3-layer lens:

- Results of measurements confirm desired flat focal plane for centered laser beams on the lens
- Off-center laser beams in agreement with simulation

L. Allison, R. Dzhygadlo, T. Hartlove, G. Kalicy, C. Schwarz

Cylindrical 3-layer lens

• Very good agreement of measured data with simulation

Jefferson Lab

15

Mapping 3-layer Lens ۲ [cm]

Cylindrical 3-layer lens

• Very good agreement of measured data with simulation

• Two radiation-hard 3-layer spherical prototype lenses currently in production, will be available early fall 2019.

Laser setup at ODU to map the focal plane Current setup:

Spherical and cylindrical 3-layer lens prototypes

L. Allison, R. Dzhygadlo, T. Hartlove, G. Kalicy, C. Schwarz

- Two radiation-hard 3-layer spherical prototype lenses currently in production, will be available early fall 2019.
- Upgrade of setup will simplify the calibration and the exchange of lenses, and increase the precision and speed of the measurements!

Laser setup at ODU to map the focal plane Current setup:

Spherical and cylindrical 3-layer lens prototypes

L. Allison, R. Dzhygadlo, T. Hartlove, G. Kalicy, C. Schwarz

So far we used lanthanum crown glass as the middle layer

R. Dzhygadlo, T. Hartlove, G. Kalicy, J. Kierstead

- So far we used lanthanum crown glass as the middle layer
- Both Sapphire and PbF₂ are very challenging to process.
- Two vendors are willing to build 3-layer lens with Sapphire and PbF₂.

Simulated π/K separation for charged pions and kaons with 6 GeV/c momentum and 30° polar angle, assuming a tracking resolution of 0.5 mrad.

R. Dzhygadlo, T. Hartlove, G. Kalicy, J. Kierstead

⁶⁰Co irradiation setup at BNL

 Radiation damage quantified by measuring the transmission in the 190-800 nm range in a monochromator.

Co⁶⁰ Chamber

T. Hartlove, G. Kalicy, J. Kierstead

Co⁶⁰ Chamber

Monochromator

T. Hartlove, G. Kalicy, J. Kierstead

⁶⁰Co irradiation results

- Radiation damage quantified by measuring the transmission in the 190-800 nm range in a monochromator
- Transmission loss of alternate lanthanum crown glass material (S-YGH51) confirmed

S-YGH51 (NLaK33 equivalent)

T. Hartlove, G. Kalicy, J. Kierstead

Tested samples

⁶⁰Co irradiation results

- Radiation damage quantified by measuring the transmission in the 190-800 nm range in a monochromator
- Seven materials studied
- Radiation hardness of sapphire and PbF₂ confirmed

Tested samples

Jefferson Lab

24

Fused

Silica

0k

Sapphire

750k

8mm

PbF₂

750k 750k

PbF₂

Greg Kalicy, July 10th, 2019

Lens

400k

4mm S-YGH51 S-YGH51 Fresne

100k

5k

⁶⁰Co irradiation next steps

- Evaluating different materials
- Luminescence
- Radiation hardness to neutrons

hpDIRC Prototype

Full system PANDA barrel DIRC prototype

- Modular design modified and improved over 11 years
- Wide range measurements performed in GSI and CERN
- Several different focusing lenses were tested

hpDIRC Prototype

Full system PANDA barrel DIRC prototype

- Modular design modified and improved over 11 years
- Wide range measurements performed in GSI and CERN
- Several different focusing lenses were tested

3-layer Lens CERN Beam Test 2017

3-layer Lens CERN Beam Test 2017

Roman Dzhygadlo

hpDIRC Activities

• Software:

- Studies of design using stand alone Geant4 package.
- Implementing hpDIRC into the full detector simulation.
- Developing hpDIRC Prototype software.
- Hardware:
 - Validating radiation hard 3-layer lens prototypes.
 - Finalizing detailed radiation hardness tests of candidates for middle layer of the lens.
 - Transferring PANDA DIRC prototype to US as a base for hpDIRC prototype.

Backup

hpDIRC Single Photon Resolution (SPR)

hpDIRC DIRC Single Photon Resolution (SPR)

High-performance DIRC Track Resolution

Simulated data

High-performance DIRC Performance

