Front-end electronics for EIC - PID

Isar Mostafanezhad - Nalu Scientific

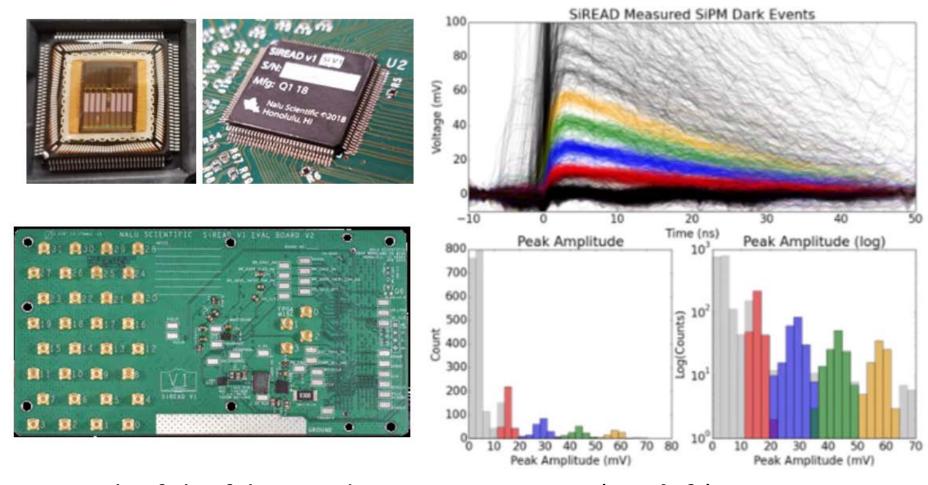
Gary Varner – University of Hawaii

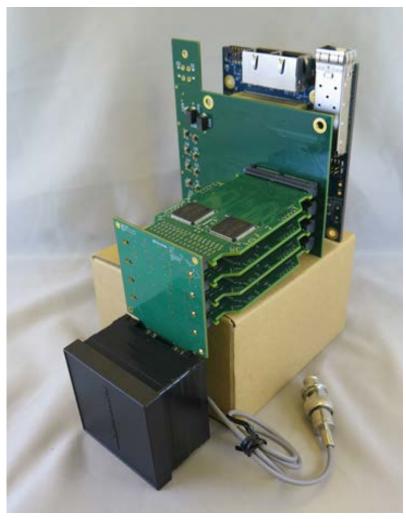
Next Generation Photosensor Readout


- Building upon lessons learned from the development of photosensor readout for the Belle II upgrade (picosecond timing, low-cost, large muon system) and CTA SCT cameras (\$1.40/channel)
- ASIC development important, but firmware and support have been the most critical issues
- UH has partnered with Nalu Scientific team to develop commercial variants (with functional extensions), to provide engineering support
- UH can then focus on strengths of an academic institution for innovation, testing and data analysis

Current Nalu's SoC-ASIC Projects

Project	Sampling Frequency (GHz)	Input BW (GHz)	Buffer Length (Samples)	Number of Channels	Timing Resolution (ps)	Available Date
ASoC	3-5	0.8	32k	8	35	Rev 2 avail
SiREAD	1-3	0.6	4k	64	80-120	Rev 1 avail
AARDVARC	6-10	2.5	32k	4-8	4-8	Rev 2 avail
AODS	1-2	1	8k	1-4	100-200	Nov 2019


- ASoC: Analog to digital converter System-on-Chip
 - Rev 1 under test Funded Phase II Eval card available
- SiREAD: SiPM specialized readout chip with bias and control
 - Rev 1 under test
- AARDVARC: Variable rate readout chip for fast timing and low deadtime
 - Rev 1 under test Funded Phase II


All chips, are designed with commercial grade tools and licenses and can be sold once commercialized.

SiREAD Electronics Evaluation

 Micrograph of the fabricated prototype SiREAD (top left). Prototype SiREAD on the evaluation PCB (top middle). Superimposed dark count waveforms recorded from a SiPM using the SiREAD operating at 1 Gsa/s (right). High channel count evaluation PCB for SiREAD with 32 dedicated MMCX connectors (bottom left).

PMT Readout

Photograph of the first generation of 256-anode 2" PMT readout for use with mRICH prototype in the Fermilab beam test facility.

Photograph of the 64 channel SiREAD based (2x SiREAD rev.1) readout card as a building block for the 256 MA-PMT readout.

HW/FW development

- Need for robust firmware development
- Nalu Scientific team provides in-house FW development, with institutional memory
- UH provides comprehensive bench, environment and picosecond laser/photosensor testing
- UH hiring new EE post doc on July 3rd (pending hiring paperwork)
- Immediate push is to get SiREAD version of 256 anode PMT readout working; evaluate performance; design more compact version