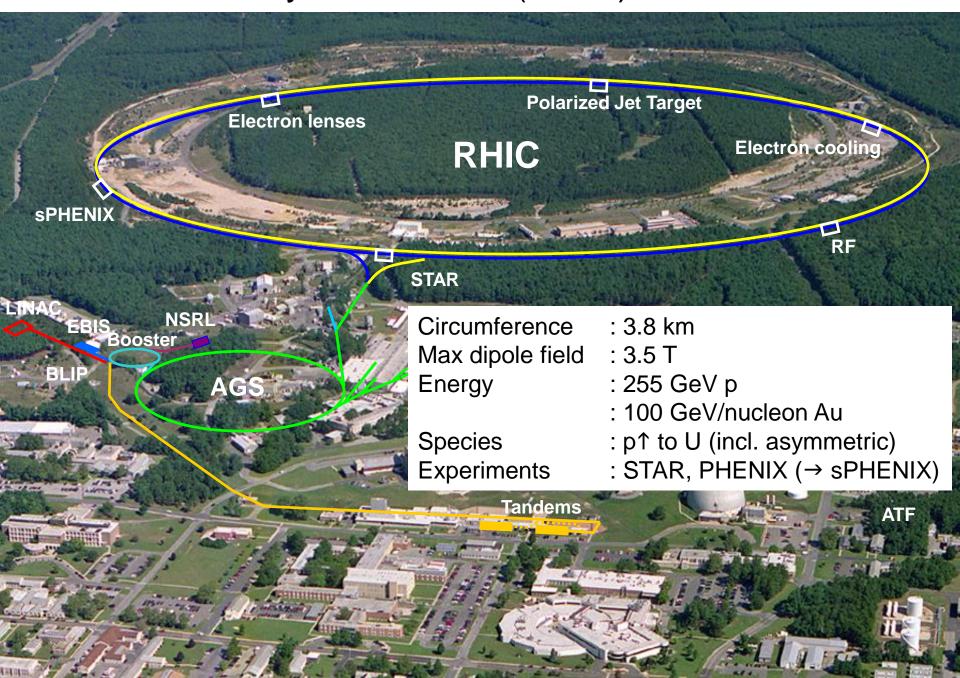
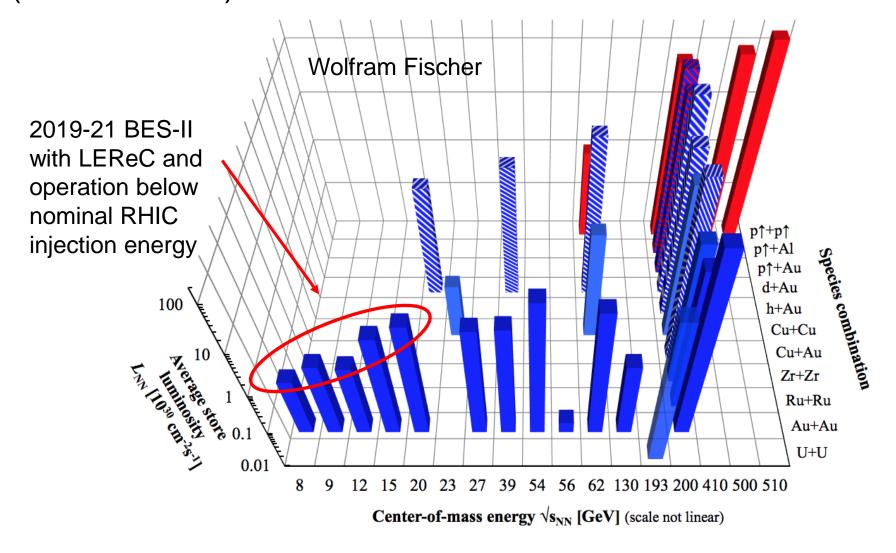
The Relativistic Heavy Ion Collider RHIC Operations

- RHIC overview
- Recent performance of RHIC
- Low energy RHIC electron cooling
- Capital and accelerator improvement projects
- Action items from previous S&T review

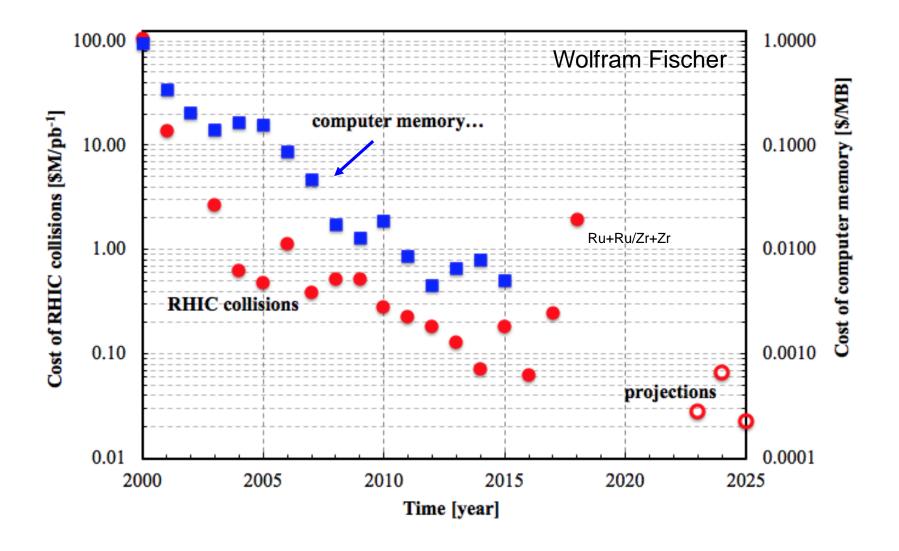
Michiko Minty
DOE NP RHIC Science & Technology Review
17 – 19 September 2019




Summary

- Operation of RHIC: met or exceeded integrated luminosity goals in the last 3 years
 - ➤ Run-17 p↑+p↑ at 255 GeV and Au + Au 27.2 GeV/n
 - ➤ Run-18 Zr + Zr / Ru + Ru at 100 GeV/n, Au + Au at 13.5 GeV/n
 - + fixed target runs (at 3.85 GeV/n)
 - > Run-19 Au + Au at 9.8 GeV/n, 7.3 GeV/n, 3.85 GeV/n
 - + fixed target runs (multiple energies)
- New and unique operation (e.g. Ru+Ru / Zr+Zr) enabled by previous upgrades
- Flexibility of operations substantially increased: many and interleaved modes is now routine
- Operation of RHIC: exceeded accelerator availability goals
- First (in the world) electron cooling with RF accelerated electron bunches demonstrated in support of Beam Energy Scan II LEReC, presentation by A. Fedotov
- Facility upgrades and maintenance ongoing to maintain high accelerator availability
- Future BES-II operations will employ the newly developed LEReC technology

Relativistic Heavy Ion Collider (RHIC) Overview



RHIC Overview - all colliding-mode physics runs to date (2001 to 2019)

The RHIC facility provides unparalleled flexibility in terms of ion species and energies for nuclear physics research in the US

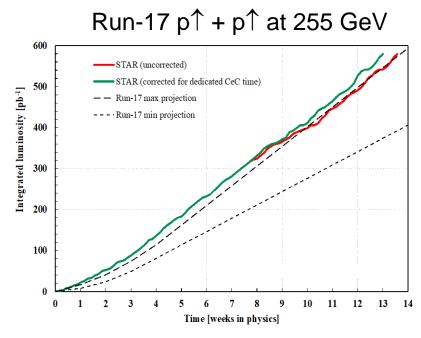
RHIC overview - time evolution of unit cost to operate RHIC

Productivity gain of RHIC operations (>1E3) is comparable with state-of-the-art developments in industry

Recent performance of RHIC: Run-17

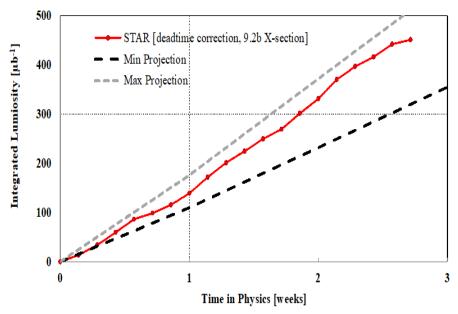
3 modes of operation

$$p\uparrow + p\uparrow$$
 at 255 GeV


15 weeks

3 weeks

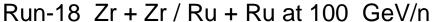
$$p\uparrow + p\uparrow$$
 at 255 GeV for RHICf

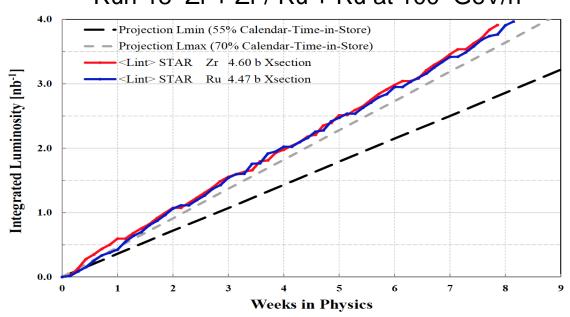

0.9 weeks

+ CeC and LEReC gun commissioning

STAR L_{max} limited to $\approx 1.4 \times 10^{32}$ cm⁻²s⁻¹ => 1st p↑+p↑ run with L-leveling

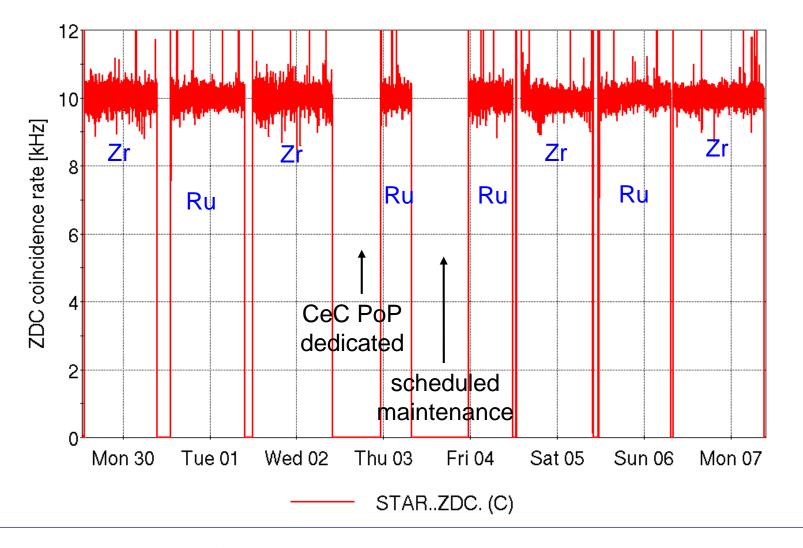
Run-17 Au + Au at 27.2 GeV/n


Met integrated luminosity goals of 400 pb⁻¹ (p \uparrow + p \uparrow) and 300 μ b⁻¹ (Au + Au) $_{6}$


Recent performance of RHIC: Run-18

LEReC and CeC electron beam development

5 modes of operation


Zr + Zr and Ru + Ru at 100 GeV/n (interleaved)	12 weeks
Au + Au at 13.5 GeV/n	4 weeks
Au + Au at 3.85 GeV/n (fixed target)	0.6 weeks
Au at 26.5 GeV/n, Coherent electron Cooling (CeC PoP)	1.1 weeks

Exceeded integrated luminosity goals

Recent performance of RHIC: Run-18, Zr+Zr / Ru+Ru

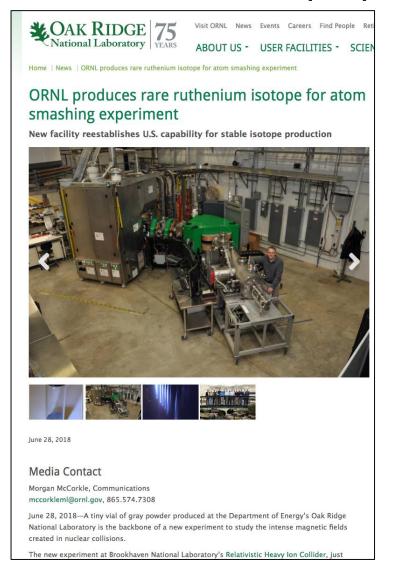
Unique operations / flexibility of RHIC met challenging requirements: flat and equal conditions for Zr + Zr and Ru + Ru constant (levelled) luminosity of 21.5×10²⁶ cm⁻²s⁻¹ turn-key, store-by-store species changes

Recent performance of RHIC: Run-18 Zr-96 and Ru-96 preparation

Zr-96

- Natural abundance: 2.78%
- From LION/EBIS (sintered ZrO_2) => M. Okamura et al.
- Enriched ZrO₂ powder commercially available, processing using RIKEN technology
- ➤ MIRP (BNL) chemists could recycle unused ZrO₂

ZrO₂ tablet (RIKEN)



Ru-96

- Natural abundance: 5.52%
- From Tandem (metallic) => P. Thieberger et al.
- ➤ Enriched Ru-96 not commercially available, provided by DOE using new isotope separation facility at ORNL (500 mg)

Recent performance of RHIC: Run-18 Zr-96 and Ru-96 preparation

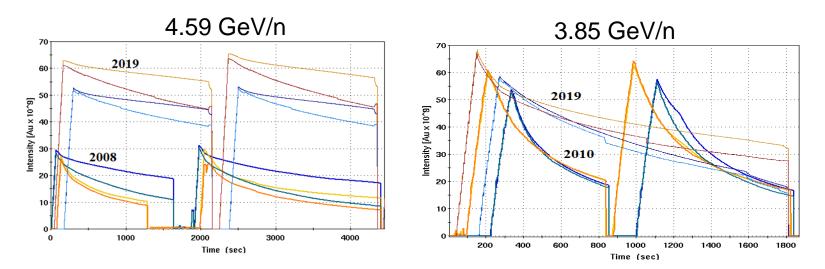
Recent performance of RHIC: Run-19 Au + Au for Beam Energy Scan II (BES-II) LEReC cooling commissioning

Colliding beam modes

- > Au + Au at 9.8 GeV/n 6.1 weeks
- > Au + Au at 7.3 GeV/n 8.7 weeks
 - ➤ Au + Au at 4.59 GeV/n 0.9 weeks
 - > Au + Au at 3.85 GeV/n 3.4 weeks
- ➤ Au + Au at 100 GeV/n (accelerator studies) 0.4 weeks

Fixed target modes

- > Au on Au at 31.2 GeV/n (18.5 hours), 7.3 GeV/n (13 hours),
 - 4.59 GeV/n (4 days), 3.85 GeV/n (2 hours)

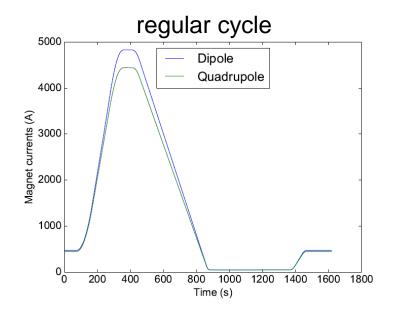

LEReC cooling commissioning

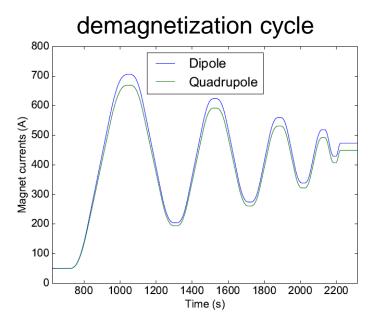
- ➤ Au at 3.85 GeV/n 24 weeks
- ➤ Au at 4.59 GeV/n 2.6 weeks

Recent performance of RHIC: Run-19

Main challenges

- intrabeam scattering (IBS) − causing rapid emittance growth with beam energy below transition energy (~24 GeV/n for Au beam)
- space charge causing large incoherent and incoherent tune shifts
- persistent current in the superconducting magnets

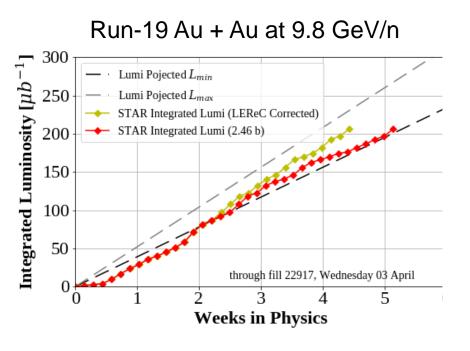


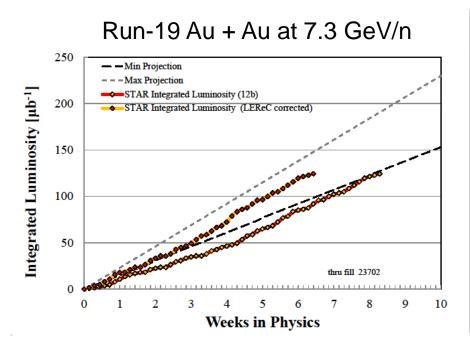

Highlights

- Low Energy RHIC Electron Cooling (LEReC) to mitigate IBS
- new 9 MHz cavities to reduce space charge effects (longer bunches)
- new lattice to accommodate larger tune shifts
- new magnet demagnetization cycle to reduce persistent current effects

Run-19 new magnet demagnetization cycle

A demagnetization cycle was developed and implemented to reduce persistent current effects in the RHIC superconducting magnets



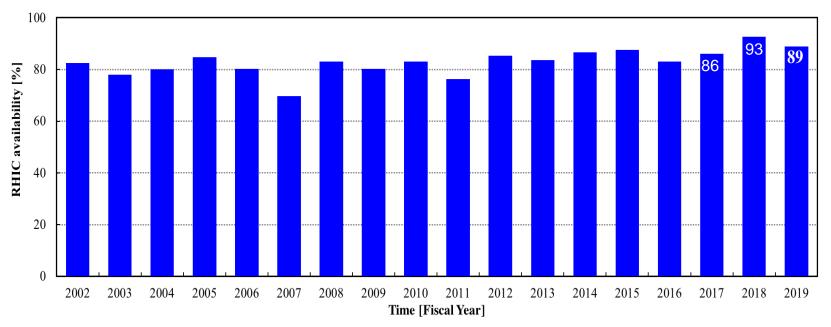

- reduced sextupole components in dipoles reduced
- reduced orbit, tune and chromaticity drifts

demagnetization cycle provided stable and reproducible conditions and enabled frequent energy changes needed for operations and LEReC commissioning

Recent performance of RHIC: Run-19 (BES-II)

Integrated luminosity for highest priority colliding beam modes

Beam Energy Scan II --- beam delivery overview

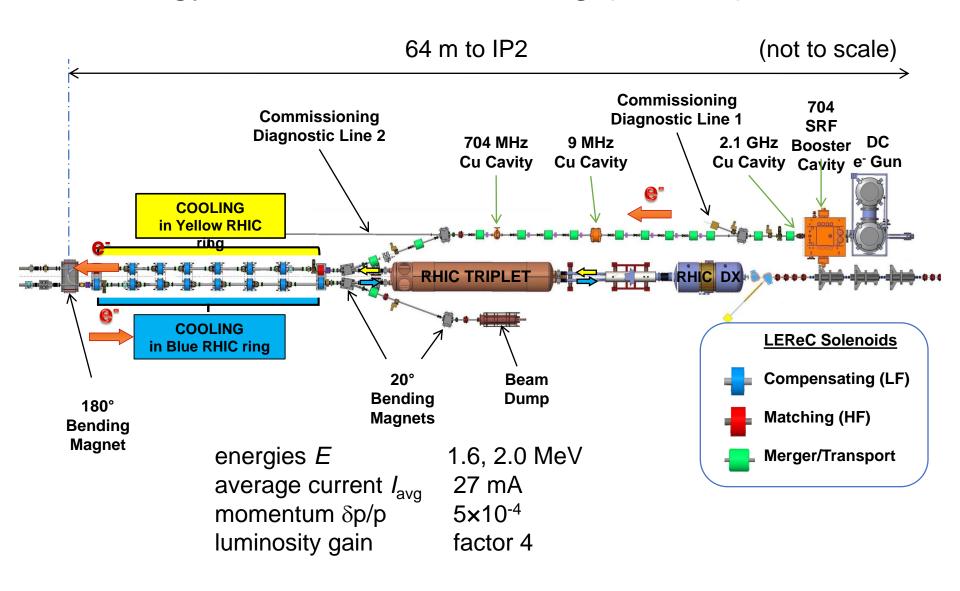

Beam Energy	$\sqrt{s_{NN}}$ (GeV)	$\mu_{\rm B} \; ({\rm MeV})$	Run Time	Number Events	
(GeV/nucleon)		S 50 7			
9.8	19.6	205	4.5 weeks	400M	582M
7.3	14.5	260	5.5 weeks	300M	324M
5.75	11.5	315	5 weeks	230M	
4.55	9.1	370	9.5 weeks	160M	
3.85	7.7	420	12 weeks	100M	
31.2	7.7 (FXT)	420	2 days	100M	51M
19.5	6.2 (FXT)	487	2 days	100M	
13.5	5.2 (FXT)	541	2 days	100M	
9.8	4.5 (FXT)	589	2 days	100M	
7.3	3.9 (FXT)	633	2 days	100M	53M
5.75	3.5 (FXT)	666	2 days	100M	
4.55	3.2 (FXT)	699	2 days	100M	201M
3.85	3.0 (FXT)	721	2 days	100M	3.7M

+ 300 M (run18)

+ FXT at
$$\sqrt{S_{NN}}$$
 = 7.7 GeV (2.9M)
 $\sqrt{S_{NN}}$ = 9.2 GeV (1.0M)
acquired parasitic to LEReC commissioning

RHIC availability reported to DOE (2002-2019)

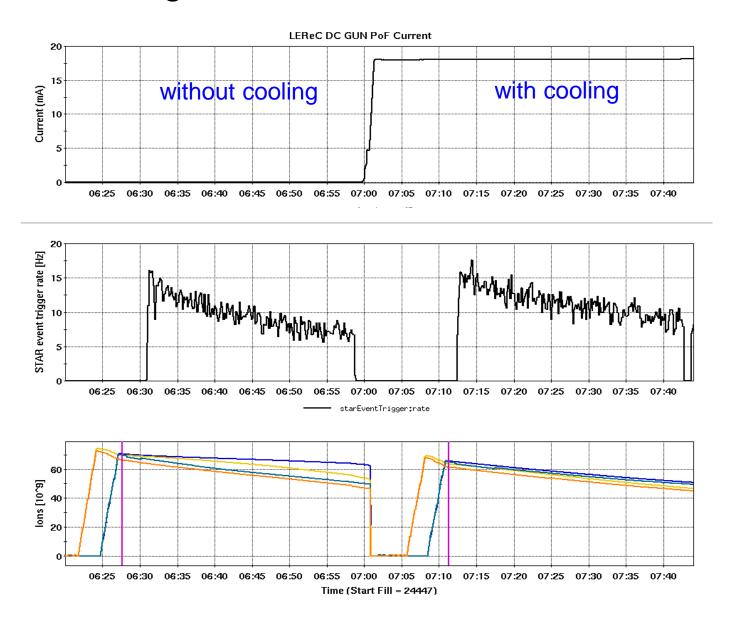
availability = beam time / scheduled beam time (scheduled time excludes scheduled maintenance)


Typical time allocations

50K to 4K cool-down initial set-up changing species accelerator studies (APEX) maintenance warm-up

0.5 week 1-2 weeks 0.5 week 16h every 2 weeks 14h every 2 weeks 0.5 week

Low Energy RHIC electron Cooling (LEReC)


A. Fedotov

LEReC accomplishments in Run-19

- World's first electron cooling with rf-accelerated bunched beam for BES-II
- ➤ first "non-magnetized" electron cooling (all previous coolers used magnetization on the cathode, i.e. solenoid field)
- > first cooling of ion bunches in two rings using the same electron beam
- ➤ first electron cooling of colliding beams
- ➤ electron cooling was commissioned at electron energy of 1.6 MeV with ion energy 3.85 GeV/n electron energy of 2 MeV with ion energy of 4.58 GeV/n
- ➤ electron cooling of RHIC stores with 111 ion bunches in both rings demonstrated at both 3.85 and 4.59 GeV/nucleon ion beam energies

Effect of cooling at 4.59 GeV/nucleon

Colliding mode projections for Run-20

5.75 x 5.75 GeV/n L_{avg} improvement factor, total = 2.4x Run-10 L_{avg} improvement factor, +- 70 cm = 2.3x Run-10 bunch intensity $N_{\rm b}$: 1.1 \rightarrow 1.35e9 rms emittance $\varepsilon_{\rm n}$: 2.5 \rightarrow 2.5 mm bunch length $\sigma_{\rm s}$: 1.4 \rightarrow 1.4 m envelope function β^* : 6.0 \rightarrow 4.0 m electron cooling : OFF 4.59 x 4.59 GeV/n L_{avg} improvement factor, total = 1.5x Run-19 L_{avg} improvement factor, +/- 70 cm = 2.4x Run-19 bunch intensity $N_{\rm b}$: $0.8 \rightarrow 0.9e9$ rms emittance $\varepsilon_{\rm n}$: $1.5 \rightarrow 1.6$ mm bunch length $\sigma_{\rm s}$: $3.8 \rightarrow 2.3$ m envelope function β^* : $4.5 \rightarrow 4.5$ m electron cooling: ON

Improvements for increased efficiency in Run-20

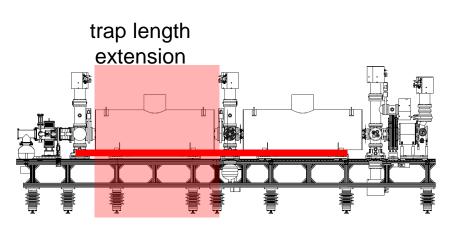
- > reduced number of mode changes
- \triangleright shortest possible bunches at space charge limit (x = -0.06?)
- ➤ fixed and reliable Au beam parameters for cooling at 4.59 GeV (requires some intensity margin in the injectors)
- beam conditions that allow STAR to stay on during injection
- ➤ longer STAR beryllium beam pipe (4 m) for increased longitudinal acceptance (deferred)

Run-20 will be very challenging with

- Au + Au at 5.75 GeV/n (without cooling)
- Au + Au at 4.59 GeV/n (with cooling)
- > up to 6 fixed target energy runs
- continued cooling commissioning at 3.85 GeV/n
- developments for coherent electron cooling

RHIC Run-20 and beyond

LEReC/BES-II plan from 2015 still holding


Overview (10/1	5/15)								
		FY2015	2016	2017	2018	2019	2020	2021	2022
complete	construction								
complete	installation								
complete	hardware commissioning								
complete	e-beam commissioning								
in progress	cooling commissioning					interleaved			
in progress	physics operation					inten	eaveu	contingency	

Plan

- 2018: complete LEReC electron beam commissioning (DONE)
- ➤ 2019: LEReC cooling commission interleaved with physics (DONE)
- > 2020: Use cooled beams at 2 (possibly 3) lowest energies
- > 2021: contingency if event number goals not met

Capital and accelerator improvement projects

- Extended EBIS (CP) 2nd sc solenoid + gas cell completion for Run-20
- RHIC cryo control system upgrade (CP)
- RHIC quench detection (CP)
- Linac vacuum system upgrade (AIP)
- > RHIC turbo pump upgrade (AIP)
- > RHIC cryo plant cold expander train upgrade (AIP)
- ➤ Booster AC dipole (He-3↑)
- ➤ PS: Booster sextupoles, Booster RF tuning (band III), AGS quad and sextupoles, H10/L20, BtA and LtB, RHIC IR8 tq (sPHENIX)
- Siemens fire suppression system
- ➤ AGS MM evaporation cooler
- Vacuum lab equipment (ultrasound cleaner, oven)

Capital and Accelerator Improvement Projects Funding (FY2017-2025)

(\$000)	total	FY2017	FY2018	FY2019	FY2020E	FY2021E	FY2022E	FY2023E	FY2024E	FY2025F
RHIC CE										
Extended EBIS	1,775	1,100	200	remai	ning pe	erforma	ance up	grade	(until 2	2020)
RHIC cryo control system upgrade	1,450	-	600	850			•			
RHIC quench detection system upgrade	1,000	-	-	1,000						
RHIC Access Control System upgrade	2,000	-	-	-	850	900	250			
AGS beam position monitor electronics upgrade	650	-	-	-	-	-	650			
Chipmunks upgrade	900	-	-	-	-	-	-	900		
RHIC cryo corrector flowmeters upgrades	950	-	-	-	-	-	-	-	950	-
Replacement of AGS corrector power supplies	1,000	-	-	-	-	-	-	-	-	1,000
Water tower #7 replacement	-	-	-	-	-	-	-	-	-	-
Total CE		1,100	800	1,850	850	900	900	900	950	1,000
RHIC AIP										
Low-Energy RHIC electron Cooling (LEReC)	8,300	1,300								
Linac vacuum system upgrade	3,000	1,100	1,900							
RHIC turbo pump upgrade	883	-	500							
RHIC cryo plant cold expander train upgrade	7,000	-	-	4,500	2,500					
AGS Siemens cycloconverter upgrade	2,600	-	-	-	-	2,600				
RHIC cryo plant warm expander train upgrade	5,400	-	-	-	-	-	2,700	2,700		
480 V substations and power circuit breaker upgrade	1,500	-	-	-	-	-	-	-	1,500	
RHIC cryo cold end heat exchanger and expander upgrade	4,200	-	-	-	-	-	-	-	1,300	2,900
Total AIP		2,400	2,400	4,500	2,500	2,600	2,700	2,700	2,800	2,900
Total RHIC CE & AIP		3,500	3,200	6,350	3,350	3,500	3,600	3,600	3,750	3,900
Isotope Program AIP									A	
Linac Intensity Upgrade Phase II					proposed (<\$10M)					
Total Isotope AIP		-	-	-			-	-	-	_

- Previous upgrades in 2 categories:
 - 1. Performance upgrades
 - 2. Maintenance/upgrades of technical infrastructure
- New upgrades now focus on 2. category

M&S+25 FTE is approx. 0.5% of RHIC hadron complex replacement value

Action items from 2014 and 2016 S&T reviews

- 2014 no accelerator related recommendations
- 2016 "Develop a plan to improve the machine protection system for operation at ultimate luminosity and intensity of ion and proton beams. Submit to DOE NP by January 1, 2017."

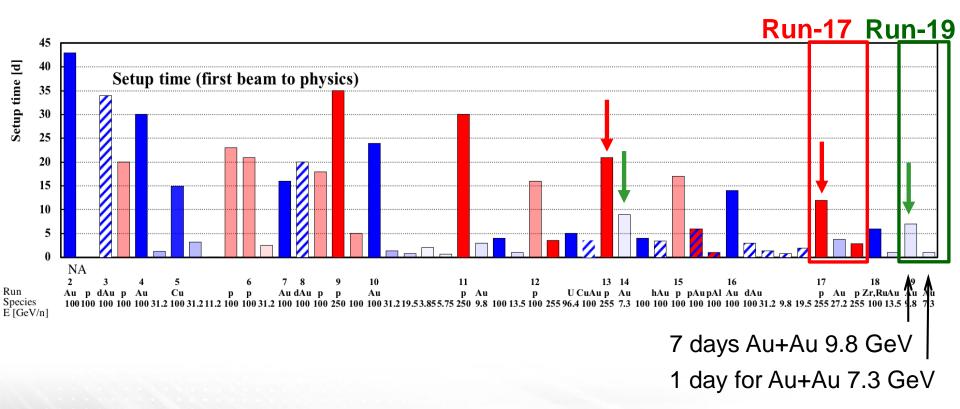
Detailed response submitted in August, 2016. Upgrade with two principle components identified:

- Implementation of slow (30-40 ms now 6 ms) mechanical switch in series with the existing fast (<1 ms) thyratron high-voltage switch (DONE)
- Additional MPS inputs to provide added protection beam loss monitors (DONE) fast orbit correctors power supplies (will be completed in Run-20) beam position monitors (DONE) radiofrequency cavities (DONE)

To complete prior to resuming high energy operation:

- test delayed dump and energy extraction in operation (reduced risk in low energy operation)
- > test delayed energy extraction with higher intensity and full energy (end of run)

Summary


Operation of RHIC: met or exceeded integrated luminosity goals in the last 3 years

- New and unique operation (e.g. Ru+Ru / Zr+Zr) enabled by previous upgrades
- Flexibility of operations substantially increased: many and interleaved modes is now routine
- Operation of RHIC: exceeded accelerator availability goals
- First (in the world) electron cooling with RF accelerated electron bunches demonstrated in support of Beam Energy Scan II - LEReC, presentation by A. Fedotov
- Facility upgrades and maintenance ongoing to maintain high accelerator availability
- Future BES-II operations will employ the newly developed LEReC technology

Back-up material

Setup time:

- for 1st species in run: from both rings cold to 1st physics store
- for following species: from beginning of setup to 1st physics store

TRANSPARENT: low energy INTRANSPARENT: high energy

BLUE: heavy ion runs

RED: polarized proton runs

RHIC Run-17 detail

```
3 modes for physics
```

```
p\uparrow+p\uparrow at 255 GeV, 15 weeks (2/12/17-5/30/17)
         STAR only
         luminosity leveling
         larger aperture beampipes at STAR and PHENIX
         MPS tests
         9 MHz cavity commissioning
Au + Au at 27.2 GeV/nucleon, 3 weeks (5/30/17 – 6/19/17)
         energy selection for concurrent operation with Coherent Electron Cooling
           Proof of Principle (CeC PoP)
p\uparrow+p\uparrow at 255 GeV – RHICf, 6 days (6/21/17 - 6/27/17)
          radial polarization using spin rotators
```

CeC and LEReC gun commissioning
90 hours dedicated CeC PoP time

RHIC Run-18 detail

5 modes for physics

```
Zr + Zr and Ru + Ru at 100 GeV/nucleon, 12 weeks (3/8/18 – 5/10/18) store-by-store changes in ion species with Zr from LION/EBIS Ru from Tandem
```

Au + Au at 13.5 GeV/nucleon, 4 weeks (5/10/18 – 5/30/18 and 6/4/18 – 6/18/18)

133 hours dedicated CeC PoP time (parasitic fixed target operation in parallel)

LEReC electron beam commissioning in parallel

Au at 3.85 GeV/nucleon on fixed target Au foil inside STAR, 4 days (5/30/18 - 6/4/18) BBQ for constant STAR event rate

BES-II preparation (injection and abort kicker tests, new hysteresis cycle)

Au in Yellow ring for CeC PoP at 26.5 GeV/nucleon, 186 hours parasitic fixed target operation in parallel

Dedicated LEReC electron beam commissioning at 1.6 MeV CeC electron beam development, 13 weeks (6/19/18 – 9/17/18)

RHIC Run-19 detail

11 modes for physics

- Mode 1A: LEReC cooling commissioning with ¹⁹⁷Au⁷⁹⁺ at 3.85 GeV/nucleon
- Mode 1B: ¹⁹⁷Au⁷⁹⁺ on ¹⁹⁷Au⁷⁹⁺ at 9.8 GeV/nucleon particle energy
- Mode 1C: ¹⁹⁷Au⁷⁹⁺ on ¹⁹⁷Au⁷⁹⁺ at 7.3 GeV/nucleon particle energy
- Mode 1D: ¹⁹⁷Au⁷⁹⁺ at 7.3 GeV/nucleon particle energy on fixed target ¹⁹⁷Au foil inside STAR (3.93 GeV/nucleon COM energy)
- Mode 1E: ¹⁹⁷Au⁷⁹⁺ on ¹⁹⁷Au⁷⁹⁺ at 3.85 GeV/nucleon particle energy
- Mode 1F: ¹⁹⁷Au⁷⁹⁺ at 3.85 GeV/nucleon particle energy on fixed target ¹⁹⁷Au foil inside STAR (3.22 GeV/nucleon COM energy)
- Mode 1G: LEReC cooling commissioning with ¹⁹⁷Au⁷⁹⁺ at 4.59 GeV/nucleon
- Mode 1H: ¹⁹⁷Au⁷⁹⁺ at 4.59 GeV/nucleon particle energy on fixed target ¹⁹⁷Au foil inside STAR (3.00 GeV/nucleon COM energy)
- Mode 1I: ¹⁹⁷Au⁷⁹⁺ on ¹⁹⁷Au⁷⁹⁺ at 4.59 GeV/nucleon particle energy
- Mode 1J: ¹⁹⁷Au⁷⁹⁺ at 31.2 GeV/nucleon particle energy on fixed target ¹⁹⁷Au foil inside STAR (7.74 GeV/nucleon COM energy)
- Mode 1K: ¹⁹⁷Au⁷⁹⁺ on ¹⁹⁷Au⁷⁹⁺ at 100 GeV/nucleon particle energy

