
EIC software

Alexander Kiselev

NPPS Group Meeting July,3 2019

EIC timelines

•  2015 NSAC (NP) Long-Range Plan:
‣  “We recommend a high-energy high-

luminosity polarized EIC as the highest
priority for new facility construction.”

•  2018 NAS review:
‣  “The committee finds that the science that

can be addressed by an EIC is
compelling, fundamental and timely.”

•  President’s budget request for FY2020:
‣  Critical Decision-0, Approve Mission Need,

is planned for FY2019

Machine requirements & EIC realization

•  Wide kinematic range: √s
from ~20 to 100 GeV,
upgradable to 140 GeV

•  Luminosity ~1033-34 cm-2s-1
•  Polarized protons,

electrons and light ions
•  Heavy ion beams up to U

JLEIC

EIC detector concepts

-> software frameworks are strictly bound to the detector concepts

Contents of this talk
n  Fast simulation tool: eic-smear

n  Software frameworks
n  GEMC
n  fun4all
n  EicRoot
n  Argonne EIC software initiative

n  PID consortium GEANT4 software (one slide)
n  Omit all the other small custom pieces of EIC MC codes

n  Near-term future trend(s)

eic-smear
by Tom Burton (BNL TF group)

OverviewOverview
•  C++ code, runs in ROOT
•  Build with configure/Make or CMake
•  libeicsmear.so to load in ROOT

Smearer:
Perform fast

detector
smearing

MC
generator

ASCII output

Tree code:
Build ROOT

tree containing
events

Djangoh

PEPSI

Rapgap

PYTHIA

Milou

LEPTO

DPMJet

gmc_trans

Large number
of EIC Monte
Carlo generators
with standard
ASCII format

Smearing
“Smearer” defines some
element of performance

+ acceptance

Smearer
Smearer
Smearer
Smearer
Smearer “Detector”NOT a

“physical
detector”:

represents the
overall

performance
in measuring

a quantity.

‣  Built-in standard smearers
provided with eic-smear

‣  Users can define own
smearers using inheritance

‣  Apply all smearers to an
MC event

‣  Yield smeared event

‣  Optionally recalculate
derived values e.g x, Q2

How to use it
•  Write a ROOT script:

•  Smear your ROOT tree:
root[0] SmearTree(createDetector(), “mc.root”, “smeared.root”);

Simple “Device”
smearers define σ(X)

via text string

Handles event
loop, file I/O

Smear::Detector createDetector() {
// Resolution in momentum, sigma(P).
// sigma(P) = 0.4%P + 0.3%P^2.
Smear::Device tracking(“P”, “0.004 * P + 0.003 * pow(P, 2)”);
 // Add devices to a Detector.
 Smear::Detector detector;
 detector.AddDevice(tracking);
 return detector;
}

•  “Standard” detector descriptions (like STAR or BeAST) exist

GEMC
by Maurizio Ungaro (JLab)

GEant4 MonteCarlo Architecture

• Application independent
geometry/digitization/fields:
definitions stored in databases

• Realistic hits treatment:
electronic time window, voltage
versus time signals.

• Sensitive attributes assigned at
run time: real calibration, survey
tilts and displacements.

• Plugins for generator formats
(LUND, BEAGLE, easy expansion)

• Plugins for output formats (TXT,
CODA, JSon, easy expansion)

• Realistic signal treatment allows
for background rate studies,
including pile-up effects • Application for detector simulations

based on Geant4
• Macro language for detector design
• Various geometry definitions: GEMC,

gdml, CAD

• Data card (XML) to steer application,

all Geant4 macro commands
supported by design

Geometry
Native

CAD

GDML

Input: Native, CAD, GDML. Arbitrary
hierarchy, can be mixed and matched.

Materials, sensitivity assigned at run-time.

Experiments using the GEMC Framework: CLAS12 (Hall-B), EIC Beamline and detectors, HPS, Solid

Digitization, Output

> BST

 > True Step by Step infos (101, 0)
 - Edep (101, 1)
 - Pid (101, 2)
 - positions (101, 3)

 > Dgtz Step by Step infos (102, 0)
 - ADCL (102, 1)
 - ADCR (102, 2)

 > True Integrated infos (103, 0)
 - Edep (103, 1)
 - Pid (103, 2)
 - positions (103, 3)

 > Dgtz Integrated infos (104, 0)
 - ADCL (104, 1)
 - ADCR (104, 2)

 > Voltage as a function of time (105, 0)
 - Identifier (105, 1)
 - Time (105, 2)
 - Voltage (105, 3)

 > Trigger Bank (106, 0)
 - Identifier (106, 1)
 - Time (106, 2)
 - Voltage (106, 3)

•  Single ADC/TDC over
electronic time window.

•  Voltage vs time signal.
•  FADC output (4ns

intervals or integratal
mode)

• Automatic true
information

• All g4 steps in the
output

Graphical Interface
• Generator
•  Event time

window
•  Background

beams
• Camera

views slices.
• Axis, Scale,

Show field.

• Geant4
OpenGL
View for the
whole
detector.

• Can inspect
and open a
view on
single
volumes.

•  Volumes
hierarchies
and
properties

• Output to
GDML

• Graphical
analysis of
steps in a
hit.

• Can choose
variable to
display.

fun4all
by Chris Pinkenburg (BNL)

-> see the previous talk

EicRoot
by AK (BNL)

EicRoot framework building blocks
n  Interface to GEANT, ROOT, …

EicRoot

PandaRoot FopiRoot
FairBase

n  “Ideal” track finder,
n  Interface to GenFit
n  …

n  TPC R&D stuff, …

eic-smear

n  MC generated evts import
n  Fast smearing codes solenoid

modeling

CbmRoot

n  RICH stuff

IR design
configuration

-> basically a yet another FairRoot software clone

End user view

-> MC points

simulation

n  No executable (steering through ROOT macro scripts)

digitization PID; assembly reconstruction
-> Hits -> Tracks, clusters -> Events

n  ROOT files for analysis available after each step
n  C++ class structure is well defined at each I/O stage

Example case studies

Pseudo-rapidity
-3 -2 -1 0 1 2 3

 /P
 [

%
]

P
σ

M
om

en
tu

m
 re

so
lu

tio
n

0

1

2

3

4

5

6

7
50 GeV/c
25 GeV/c
10 GeV/c
 1 GeV/c

Tracker momentum
resolution

Neutron fluence

 [GeV/c]
t

DVCS proton P
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ev
en

ts

0
50

100
150
200
250
300
350
400
450

RP B0

100 x 10 GeV

first quad aperture &
beam pipe

DIS electron
reconstruction

12 GeV pions: Hcal vs EmCal

slope ~1.20

Roman Pot acceptance

Calorimeter design optimization

PID Consortium software

Mostly RICH & ToF applications

single	module	

for	JLEIC	

GEMC	

n  All are custom GEANT4 codes
n  No easy way to incorporate in EicRoot

Modular RICH Dual radiator RICH

DIRC

Argonne EIC software

	
Event	genera*on	
	

		Produce	the	simula:on	input	events	
	
Detector	simula*on	
	

			Par:cle	transport	through	detectors		
	
Digi*za*on		
	

			Turn	energy	deposits	in	ac:ve	media	into	detector	hits	
	
Reconstruc*on	of	
	

			Event	vertex,	charged	tracks,	Par:cle	Flow	Objects	(PFO)	
	
Perform	analysis	
	

				Collec:on	of	benchmark	analyses	
	

Full	simula*on	and	reconstruc*on	chain	

Da
ta
	M

od
el
	

Argonne	So>ware:	Overview		
Legacy	chain	
	
		Adapta:on	of	the	SiD	(ILC)	simula:on	and		
				reconstruc:on	soLware	chain	
	
		Major	parts	
	

					SLIC	(wrapper	around	GEANT4)	
					LCSIM	(digi:za:on	and	event	reconstruc:on)	
					slicPandora	(PFA	reconstruc:on)	
	
		Visualiza:on	with	JAS4pp	
	
		Limita:ons	
	

						Only	SiD	subdetectors	(e.g.	no	RICH)	
						Geometry	descrip:on	not	centralized	
						Geometry	constrained	to	be	symmetric	
						Some	parts	difficult	to	maintain	
	
		Full	chain	
	

						Available	
						Studies	of	F2	reconstruc:on,	:ming…	

Evolu*on	chain	
	
		Evolved	from	the	legacy	chain	
	
		Geometry	interface	
	

					DD4HEP	
	
	
	
		Features	
	

						Fully	maintainable	
						Geometry	obtained	from	single	source	
						Geometry	can	be	parametrized	
						Geometry	not	constrained	to	be	symmetric	
						New	subsystems	can	be	easily	implemented	
							
			S:ll	working	on	
	

						Realis:c	digi:za:on	
						Generic	tracking	
						PFA	reconstruc:on	
						Visualiza:on	

Nuclear	Physics	Detector	Library	(NPDet)	
Collec:on	of	parametrized	detectors	which	can	be	developed	into	full	concepts	

TOPSiDE	

ProIO	

Grand unification,
yet another try

by Dmitry Romanov, David Lawrence & others (JLAB)

Generators	

Fast	simula:on	 Full	simula:on	

Reconstruc:on	&	analysis	

g4e	
JLEIC	in	Geant4	

Geant4	
Fast	mode	Eic	smear	

Generators	
Database	 Pythia	 Beagle	 Herwig	 …	

ejana	–	EIC	JANA(2)	

BNL	&	Jlab	effort	on	
Fast	detector	prototyping	

ejana	=	EIC	Jana	
Community	reference		
reconstruc:on	

g4e	=	Geant	4	EIC	
C++	genue	GEANT4	with		
JLEIC	detector	in	it	

Database	with	various	
MC	samples	

(1)	

(3)	

(2)	

(1) MC	events	
(2)  Digi:zed	hits	+	magne:c	field	+	material	distribu:on	
(3)  Reconstructed	events		

Overview

Software distribution
NO	EFFORT	AT	ALL	
Novice	

Some	effort	
Experts	

Efforts	required	axis	

Cloud	 Containers	
Worksta:on	
Compila:on	

	
EJPM	

Conda	Jlab	farm	

User Interface

Workflow oriented interactive environment based on Jupyter

eJANA - Community reference reconstruction

eJANA - stands for EIC JANA
•  Basic reconstruction
•  Physics analysis
•  Users detector codebase

integration

Reconstruction
•  Tracking - Genfit
•  Vertex finding – Rave

•  Physical analysis:
－ ROOT C++ or
－ Python data science tools

(Jupyter, Seaborn, Pandas, etc)

Any	exis:ng	C++	(or	even	others)	code	
can	be:	

	-	compiled	as	JANA	plugin		
	-	run	parallelized	in	eJANA	
	-	accessed	by	other	plugins	 EIC	jana	

•  The codename g4e – stands
for Geant 4 EIC

•  Beta stage
•  √s 100 GeV design is

implemented
•  Imports CAD, accelerator

group data
•  Exports final Geometry in

various formats
•  Plain flattened analysis ready

ROOT files

For those who prefer scripting over compilation
Geant 4 python can be used	

GEANT 4 EIC

Backup (JANA2)

Overly	Simplified	View	of	JANA’s	Role	

DAQ	 obj	

reconstruc:on	
algorithms	

obj	
obj	
obj	

obj	
obj	
obj	

JANA	raw	data	
files	

C++	objects	
(low	level)	

C++	objects	
(refined)	

reconstructed	data	
files	

Some	Goals	of	the	JANA	framework	
•  Provide	mechanism	for	many	physicists	to	
contribute	code	to	the	full	reconstruc:on	
program	
	

•  Implement	mul:-threading	efficiently	and	
external	to	contributed	code	
	

•  Provide	common	mechanisms	for	accessing	
job	configura:on	parameters,	calibra:on	
constants,	etc...	

STOCK	

MANUFACTU
RE	

in	
stock?	

YES	

NO	

FACTORY	

STOCK	

MANUFACTU
RE	

in	
stock?	

YES	

NO	

FACTORY	

Data	on	demand	=	Don’t	do	it	unless	you	need	it	

Factory Model

STOCK	

MANUFACT
URE	

in	
stock?	

ORDER	

PRODUCT	

YES	

NO	

FACTORY	
(algorithm)	

Stock	=	Don’t	do	it	twice	 Conserva*on	
of	CPU	cycles!	

Complete	Event	Reconstruc:on	in	JANA	

JANA	

Event	
Processor	

Event	
Source	

HDDM	File	
EVIO	File	

ET	system	
Web	Service	

User	supplied	code	

Fill	histograms	
Write	DST	
L3	trigger	

Framework	has	a	layer	that	
directs	object	requests	to	the	

factory	that	completes	it	

This	allows	the	
framework	to	easily	
redirect	requests	to	
alternate	algorithms	

specified	by	the	user	at	
run	Mme	

MulMple	algorithms	
(factories)	may	exist	in	
the	same	program	that	
produce	the	same	type	

of	data	objects	

Multi-threading

Event	
Processor	

Event	
Source	

thread	

thread	

thread	

thread	

o 	Each	thread	has	a	complete	
set	of	factories	making	it	
capable	of	completely	
reconstrucMng	a	single	event	

o 	Factories	only	work	with	
other	factories	in	the	same	
thread	eliminaMng	the	need	for	
expensive	mutex	locking	within	
the	factories	

o 	All	events	are	seen	by	all	
Event	Processors	(mulMple	
processors	can	exist	in	a	
program)	

Source	
(file)	 thread	

Histograms/Trees	
(file)	

recon.	evnt	task	
recon.	evnt	task	
recon.	evnt	task	

thread	

entangled	event	
task	

Task	
Queue	

entangled	event	
task	

entangled	event	
task	

recon.	evnt	task	
recon.	evnt	task	
recon.	evnt	task	
recon.	evnt	task	

thread	

thread	

read

parse

analyze

Task	
Queue	

JANA2 generalizes the “event” queue to allow multiple queues.
Threads are now responsiible for moving data between queues

...	

sequen*al	
arrow	

parallel	
arrow	

sequen*al	
arrow	

queue	 queue	

JANA2 arrows separate sequential and parallel tasks

●  CPU	intensive	event	reconstruc:on	will	be	done	as	a	parallel	arrow	
●  Other	tasks	(e.g.	histogram	filling)	can	be	done	as	a	sequen:al	arrow	
●  Fewer	locks	in	user	code	allows	framework	to	beier	op:mize	workflow	

