Semi-leptonic B_s decays

Oliver Witzel
(RBC-UKQCD collaborations)

University of Colorado
Boulder

Lattice X IF
BNL, Upton, NY, USA
September 24, 2019
Semi-leptonic B_s decays

Oliver Witzel
(RBC-UKQCD collaborations)

Jonathan M. Flynn, Ryan C. Hill, Andreas Jüttner, J. Tobias Tsang, Amarjit Soni
introduction
Motivation

- Determine CKM matrix elements, fundamental parameters of the Standard Model
- Predict processes to test Standard Model or discover new physics

[http://ckmfitter.in2p3.fr]
\[|V_{ub}| \text{ from exclusive} \]

\[B \rightarrow \pi \ell \nu \]

\[B_s \rightarrow K \ell \nu \]

- \(B \rightarrow \pi \ell \nu \) and \(B \rightarrow D \ell \nu \) presented by Ryan C. Hill
- Only spectator quark differs
- Lattice QCD prefers \(s \) quark over \(u \) quark: statistically more precise, computationally cheaper
- \(B \) factories run at \(\Upsilon(4s) \) threshold \(\Rightarrow \) \(B \) mesons
- LHC collisions create many \(B \) and \(B_s \) mesons which decay \(\Rightarrow \) LHCb
 - LHCb prefers the ratio \((B_s \rightarrow D_s \ell \nu)/(B_s \rightarrow K \ell \nu) \Rightarrow |V_{cb}/V_{ub}| \)
$|V_{ub}|$ from exclusive

$B \rightarrow \pi \ell \nu$

$B \rightarrow K \ell \nu$

$|V_{cb}|$ from exclusive

$B \rightarrow D \ell \nu$

$B_{s} \rightarrow D_{s} \ell \nu$
V_{ub} from exclusive semi-leptonic $B_s \rightarrow K \ell \nu$ decay

\[
q^2 = M_{B_s}^2 + M_K^2 - 2M_{B_s}E_K
\]

- Conventionally parametrized by (B_s meson at rest)

\[
d\Gamma(B_s \rightarrow K \ell \nu) \frac{dq^2}{dq^2} = \frac{G_F^2|V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_K^2 - M_K^2}}{q^4M_{B_s}^2} \left[\left(1 + \frac{m_\ell^2}{2q^2}\right) M_{B_s}^2(E_K^2 - M_K^2)|f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2}(M_{B_s}^2 - M_K^2)^2|f_0(q^2)|^2 \right]
\]

nonperturbative input
Nonperturbative input

- Parametrizes interactions due to the (nonperturbative) strong force
- Use operator product expansion (OPE) to identify short distance contributions
- Calculate the flavor changing currents as point-like operators using lattice QCD
RBC-UKQCD’s set-up

- RBC-UKQCD’s 2+1 flavor domain-wall fermion and Iwasaki gauge action ensembles
 - Three lattice spacings \(a \sim 0.11 \) fm, 0.08 fm, 0.07 fm; one ensemble with physical pions

RBC-UKQCD’s set-up

<table>
<thead>
<tr>
<th>L</th>
<th>a^{-1}(GeV)</th>
<th>am_l</th>
<th>am_s</th>
<th>M_π(MeV)</th>
<th># configs.</th>
<th>#sources</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>24</td>
<td>1.784</td>
<td>0.005</td>
<td>0.040</td>
<td>338</td>
<td>1636</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>24</td>
<td>1.784</td>
<td>0.010</td>
<td>0.040</td>
<td>434</td>
<td>1419</td>
<td>1</td>
</tr>
<tr>
<td>M1</td>
<td>32</td>
<td>2.383</td>
<td>0.004</td>
<td>0.030</td>
<td>301</td>
<td>628</td>
<td>2</td>
</tr>
<tr>
<td>M2</td>
<td>32</td>
<td>2.383</td>
<td>0.006</td>
<td>0.030</td>
<td>362</td>
<td>889</td>
<td>2</td>
</tr>
<tr>
<td>M3</td>
<td>32</td>
<td>2.383</td>
<td>0.008</td>
<td>0.030</td>
<td>411</td>
<td>544</td>
<td>2</td>
</tr>
<tr>
<td>C0</td>
<td>48</td>
<td>1.730</td>
<td>0.00078</td>
<td>0.0362</td>
<td>139</td>
<td>40</td>
<td>81/1*</td>
</tr>
<tr>
<td>M0</td>
<td>64</td>
<td>2.359</td>
<td>0.000678</td>
<td>0.02661</td>
<td>139</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>F1</td>
<td>48</td>
<td>2.774</td>
<td>0.002144</td>
<td>0.02144</td>
<td>234</td>
<td>98</td>
<td>24</td>
</tr>
</tbody>
</table>

* All mode averaging: 81 “sloppy” and 1 “exact” solve [Blum et al. PRD 88 (2012) 094503]

Lattice spacing determined from combined analysis [Blum et al. PRD 93 (2016) 074505]

$\mathbf{a}: \sim 0.11 \text{ fm}, \sim 0.08 \text{ fm}, \sim 0.07 \text{ fm}$
RBC-UKQCD’s set-up

- RBC-UKQCD’s 2+1 flavor domain-wall fermion and Iwasaki gauge action ensembles
 - Three lattice spacings $a \sim 0.11$ fm, 0.08 fm, 0.07 fm; one ensemble with physical pions

- Unitary and partially quenched domain-wall up/down quarks

- Domain-wall strange quarks at/near the physical value

- Additional challenge $m_c = 1.28\text{GeV} \sim 270 \times m_d$
 $m_b = 4.18\text{GeV} \sim 1000 \times m_d$
RBC-UKQCD’s set-up

► Charm: Möbius domain-wall fermions optimized for heavy quarks [Boyle et al. JHEP 1604 (2016) 037]
→ Simulate 3 or 2 charm-like masses then extrapolate/interpolate

[Boyle et al. JHEP 1712 (2017) 008]
RBC-UKQCD’s set-up

- **Charm**: Möbius domain-wall fermions optimized for heavy quarks [Boyle et al. JHEP 1604 (2016) 037]
 → Simulate 3 or 2 charm-like masses then extrapolate/interpolate

- **Effective relativistic heavy quark (RHQ) action for bottom quarks**
 → Builds upon Fermilab approach [El-Khadra et al. PRD 55 (1997) 3933]
 → Allows to tune the three parameters \((m_0 a, c_P, \zeta)\) nonperturbatively [PRD 86 (2012) 116003]
 → Smooth continuum limit; heavy quark treated to all orders in \((m_b a)^n\)
 → Mostly nonperturbative renormalization [Hashimoto et al. PRD61 (1999) 014502]
 [El-Khadra et al. PRD64 (2001) 014502]

\[
Z_{V}^{bl} = \rho \sqrt{Z_{V}^{ll} Z_{V}^{bb}}
\]
\[B_s \rightarrow K \ell \nu \]
\(B_s \rightarrow K \ell \nu \) form factors

- Parametrize the hadronic matrix element for the flavor changing vector current \(V^\mu \) in terms of the form factors \(f_+(q^2) \) and \(f_0(q^2) \)

\[
\langle K | V^\mu | B_s \rangle = f_+(q^2) \left(p_{B_s}^\mu + p_K^\mu - \frac{M_{B_s}^2 - M_K^2}{q^2} q^\mu \right) + f_0(q^2) \frac{M_{B_s}^2 - M_K^2}{q^2} q^\mu
\]

- Calculate 3-point function by

 - Inserting a quark source for a strange quark propagator at \(t_0 \)
 - Allow it to propagate to \(t_{\text{sink}} \), turn it into a sequential source for a \(b \) quark
 - Use a light quark propagating from \(t_0 \) and contract both at \(t \) with \(t_0 \leq t \leq t_{\text{sink}} \)
$B_s \rightarrow K\ell\nu$ form factors: F1 ensemble

Comparison of fit to the ground state only with fit including one excited state term for K and B_s
Chiral-continuum extrapolation using SU(2) hard-kaon χPT

- Updating calculation [PRD 91 (2015) 074510] with improved values for a^{-1} and RHQ parameters
- $f_{pole}(M_K, E_K, a^2) = \frac{1}{E_K+\Delta} c^{(1)} \times \left[1 + \frac{\delta f}{(4\pi f)^2} + c^{(2)} \frac{M_K^2}{\Lambda^2} + c^{(3)} \frac{E_K}{\Lambda} + c^{(4)} \frac{E_K^2}{\Lambda^2} + c^{(5)} \frac{a^2}{\Lambda^2 a_{g_2}^4} \right]
- δf non-analytic logs of the kaon mass and hard-kaon limit is taken by $M_K/E_K \to 0$
Estimate systematic errors due to

- Chiral-continuum extrapolation
 - Use alternative fit functions, vary pole mass, etc.
 - Impose different cuts on the data

- Discretization errors of light and heavy quarks
 - Estimate via power-counting

- Uncertainty of the renormalization factors
 - Estimate effect of higher loop corrections

- Finite volume, iso-spin breaking, . . .

- Uncertainty due to RHQ parameters and lattice spacing (a^{-1})
 - Carry out additional simulations to test effects on form factors

- Uncertainty of strange quark mass
 - Repeat simulation with different valence quark mass

⇒ full error budget
PRELIMINARY error budget $B_s \to K \ell \nu$

$\delta f = \frac{|f_{\text{variation}} - f_{\text{central}}|}{f_{\text{central}}}$
PRELIMINARY error budget $B_s \rightarrow K \ell \nu$

“Other”: 3% placeholder to cover higher order corrections, lattice spacing, finite volume, ...
Kinematical extrapolation (z-expansion)

- Map q^2 to z with minimized magnitude in the semi-leptonic region: $|z| \leq 0.146$

$$z(q^2, t_0) = \frac{\sqrt{1-q^2/t_+} - \sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+} + \sqrt{1-t_0/t_+}}$$

with

$$t_\pm = (M_B \pm M_\pi)^2$$

$$t_0 \equiv t_{\text{opt}} = (M_B + M_\pi)(\sqrt{M_B} - \sqrt{M_\pi})^2$$

[Bourrely, Caprini, Lellouch, PRD 79 (2009) 013008]

- Express f_+ as convergent power series

- f_0 is analytic, except for B^* pole

- BCL with poles $M_+ = B^* = 5.33$ GeV and $M_0 = 5.63$ GeV

- Exploit kinematic constraint $f_+ = f_0\big|_{q^2=0}$

- Include HQ power counting to constrain size of f_+ coefficients

- Systematic errors subject to changes!
Kinematical extrapolation (z-expansion)

- Map q^2 to z with minimized magnitude in the semi-leptonic region: $|z| \leq 0.146$

$$z(q^2, t_0) = \frac{\sqrt{1-q^2/t_+}-\sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+}+\sqrt{1-t_0/t_+}}$$

with

$$t_\pm = (M_B \pm M_\pi)^2$$

$$t_0 \equiv t_{\text{opt}} = (M_B + M_\pi)(\sqrt{M_B} - \sqrt{M_\pi})^2$$

[Bourrely, Caprini, Lellouch, PRD 79 (2009) 013008]

- Allows to compare shape of form factors
 - Obtained by other lattice calculations
 [Bouchard et al. PRD 90 (2014) 054506]
 - Predicted by QCD sum rules and alike

- Combination with experiment leads to the overall normalization: $|V_{ub}|$

- Systematic errors subject to changes!

- Predict SM differential branching fractions using $|V_{ub}|$ as input for lepton = μ or τ

- Predict SM differential branching fractions using \(|V_{ub}|\) as input for lepton = \(\mu\) or \(\tau\)

- Predict ratio of branching fractions \(\sim\) LFUV

\[
\begin{align*}
R_{\pi}^{\tau}/\mu &= 0.69(19) \\
R_{K}^{\tau}/\mu &= 0.77(12)
\end{align*}
\]

- Predict SM differential branching fractions using $|V_{ub}|$ as input for lepton = μ or τ

- Predict ratio of branching fractions \sim LFUV

- Predict forward-backward asymmetries using $|V_{ub}|$ as input for lepton = μ or τ
$B_s \rightarrow D_s \ell \nu$
$|V_{cb}|$ from exclusive semi-leptonic $B_s \rightarrow D_s \ell \nu$ decay

\[q^2 = M_{B_s}^2 + M_{D_s}^2 - 2M_{B_s}E_{D_s} \]

- Conventionally parametrized by (B_s meson at rest)

\[
\frac{d\Gamma(B_s \rightarrow D_s \ell \nu)}{dq^2} = \frac{G_F^2 |V_{cb}|^2 (q^2 - m_\ell^2)^2 \sqrt{E_{D_s}^2 - M_{D_s}^2}}{24\pi^3 \ q^4 M_{B_s}^2} \times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) M_{B_s}^2 (E_{D_s}^2 - M_{D_s}^2) f_+(q^2)^2 + \frac{3m_\ell^2}{8q^2} (M_{B_s}^2 - M_{D_s}^2)^2 |f_0(q^2)|^2 \right]
\]

Experiment known CKM

Nonperturbative input
Global fit $B_s \to D_s \ell \nu$

$$f(q^2, a, M_\pi, M_{D_s}) = \left[\alpha_1 + \alpha_2 M_\pi^2 + \sum_{j=1}^{n_{D_s}} \alpha_{3,j} \left[\Delta M_{D_s}^{-1} \right]^j + \alpha_4 a^2 \right] P_{a,b} \left(\frac{q^2}{M_{B_s}^2} \right)$$

with $\Delta M_{D_s}^{-1} \equiv \left(\frac{1}{M_{D_s}} - \frac{1}{M_{D_s}^{\text{phys}}} \right)$, $P_{a,b}(x) = \frac{1 + \sum_{i=1}^{N_a} a_i x^i}{1 + \sum_{i=1}^{N_b} b_i x^i}$.
Global fit $B_s \rightarrow D_s \ell \nu$

$\begin{align*}
\text{Global fit } B_s \rightarrow D_s \ell \nu \\
\begin{array}{c}
\text{Graph 1} \\
\text{Graph 2}
\end{array}
\end{align*}$

- $f(q^2, a, M_\pi, M_{D_s}) = \left[\alpha_1 + \alpha_2 M_\pi^2 + \sum_{j=1}^{n_{D_s}} \alpha_{3,j} \left[\Delta M_{D_s}^{-1} \right]^j + \alpha_4 a^2 \right] P_{a,b} \left(\frac{q^2}{M_{B_s}^2} \right)$

- Extrapolation to the continuum limit with physical quark masses

\[\text{PRELIMINARY}\]
PRELIMINARY error budget $B_s \rightarrow D_s \ell \nu$

\[\delta f = \frac{|f_{\text{variation}} - f_{\text{central}}|}{f_{\text{central}}} \]
PRELIMINARY error budget $B_s \rightarrow D_s \ell \nu$

“Other”: 3% placeholder to cover higher order corrections, lattice spacing, finite volume, …
z-expansion

- **BCL with poles** $M_+ = B_c^* = 6.33$ GeV and $M_0 = 6.42$ GeV

 kinematical constraint $f_0^{B_s \to D_s}(0) = f_+^{B_s \to D_s}(0)$
Status $B_s \rightarrow K \ell \nu$ and $B_s \rightarrow D_s \ell \nu$

- $B_s \rightarrow K \ell \nu$ chiral-continuum extrapolation
- $B_s \rightarrow D_s \ell \nu$ global fit (M_π, M_{D_s}, a^2, q^2)
- Extract synthetic data points
- Full systematic error budget
 - RHQ parameter tuning
 - Continuum extrapolation:
 - cut to data set, different fit functions, . . .
 - Charm extrapolation
 - FV, higher order disc. effects, isospin, s-quark mass tuning, . . .

- z-expansion over full q^2 range
 - BGL vs. BCL
 - Test CLN for $B_s \rightarrow D_s \ell \nu$
 - Number of synthetic data points
 - Different truncations
 - Incl. vs. excluding $f_+ = f_0 \bigg|_{q^2=0}$

- Phenomenology: $R(K)$, $R(D_s)$, . . .
Flavor Lattice Averaging Group

[FLAG 2019]
$B_s \rightarrow K\ell\nu$

\[
\frac{B(q^2)}{B(0^+)} f_{B_s\rightarrow K\ell\nu}(q^2) = \frac{f_0}{f_0^0} f_{B_s\rightarrow K\ell\nu}(q^2)
\]

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Theory Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0 average</td>
<td>HPQCD 14 (NRQCD)</td>
</tr>
<tr>
<td>f_1 average</td>
<td>RBC/UKQCD 16</td>
</tr>
<tr>
<td>f_1 HPQCD 14</td>
<td>ALPHA 16 (HQET)</td>
</tr>
<tr>
<td>f_0 RBC/UKQCD 15</td>
<td>This work (Fermilab/NR)</td>
</tr>
</tbody>
</table>

- **New FNAL/MILC** [arXiv:1901.02561]
- **Please do cite calculations feeding into FLAG averages**

[FLAG 2019] 23 / 26
B → D_{(s)}^{(*)}\ell\nu

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>Ref.</th>
<th>Nf</th>
<th>Dataset status</th>
<th>systematics</th>
<th>tree-level</th>
<th>chiral extrapolation</th>
<th>limit values</th>
<th>nonrelativization</th>
<th>heavy quark treatment</th>
<th>$w = 1$ form factor / ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPQCD 15, HPQCD 17 [614, 616]</td>
<td>2+1</td>
<td>A</td>
<td>○ ○ ○ ○ ○</td>
<td>✓</td>
<td>$G^{B_s \rightarrow D_s}(1)$</td>
<td>1.035(40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FNAL/MILC 15C</td>
<td>[613]</td>
<td>2+1</td>
<td>A</td>
<td>★ ○ ★</td>
<td>✓</td>
<td>$G^{B_s \rightarrow D_s}(1)$</td>
<td>1.065(4)(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atoz 13</td>
<td>[610]</td>
<td>2</td>
<td>A</td>
<td>★ ○ ★</td>
<td>—</td>
<td>$G^{B_s \rightarrow D_s}(1)$</td>
<td>1.033(95)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPQCD 15, HPQCD 17 [614, 616]</td>
<td>2+1</td>
<td>A</td>
<td>○ ○ ○ ○ ○</td>
<td>✓</td>
<td>$G^{B_s \rightarrow D_s}(1)$</td>
<td>1.068(40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atoz 13</td>
<td>[610]</td>
<td>2</td>
<td>A</td>
<td>★ ○ ★</td>
<td>—</td>
<td>$G^{B_s \rightarrow D_s}(1)$</td>
<td>1.052(46)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPQCD 17B</td>
<td>[618]</td>
<td>2+1+1</td>
<td>A</td>
<td>○ ★ ★</td>
<td>○</td>
<td>$F^{B_s \rightarrow D_s^*}(1)$</td>
<td>0.895(10)(24)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FNAL/MILC 14</td>
<td>[612]</td>
<td>2+1</td>
<td>A</td>
<td>★ ○ ★</td>
<td>✓</td>
<td>$F^{B_s \rightarrow D_s^*}(1)$</td>
<td>0.906(4)(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPQCD 17B</td>
<td>[618]</td>
<td>2+1+1</td>
<td>A</td>
<td>○ ★ ★</td>
<td>○</td>
<td>$F^{B_s \rightarrow D_s^*}(1)$</td>
<td>0.883(12)(28)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPQCD 15, HPQCD 17 [614, 616]</td>
<td>2+1</td>
<td>A</td>
<td>○ ○ ○ ○</td>
<td>✓</td>
<td>$R(D)$</td>
<td>0.300(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FNAL/MILC 15C</td>
<td>[613]</td>
<td>2+1</td>
<td>A</td>
<td>★ ○ ★</td>
<td>✓</td>
<td>$R(D)$</td>
<td>0.299(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New HPQCD $B_s \rightarrow D_s \ell\nu$ [arXiv:1906.00701]
New HPQCD $B_s \rightarrow D_s^{*}\ell\nu$ [arXiv:1904.02046]

Please do cite calculations feeding into FLAG averages
outlook
Outlook

▶ Second (third) entirely independent analysis completed

▶ In the final stages to complete $B_s \rightarrow K \ell \nu$ and $B_s \rightarrow D_s \ell \nu$ form factor calculation
 → As usual, carefully estimating all systematic uncertainties is tedious

▶ Our lattice calculation also includes
 → $B \rightarrow \pi \ell \nu$, $B \rightarrow \pi^+ \ell^-$
 → $B \rightarrow K^* \ell^+ \ell^-$
 → $B \rightarrow D(\ast) \ell \nu$
 → $B_s \rightarrow K^* \ell^+ \ell^-$
 → $B_s \rightarrow D_s^* \ell \nu$
 → $B_s \rightarrow \phi \ell^+ \ell^-$
 → ...

▶ Current status $B_s \rightarrow K \ell \nu$ and $B_s \rightarrow D_s \ell \nu$:
 [arXiv:1903.02100]

▶ Future
 → Add $48^3 \times 96$ ensemble with physical pions

▶ Parallel efforts: SU(3) breaking ratios
 [arXiv:1812.08791]
 → Talk by J. Tobias Tsang
Resources for RBC-UKQCD’s calculation

USQCD: Ds, Bc, and pi0 cluster (Fermilab), qcd12s cluster (Jlab), skylake cluster (BNL)

RBC qcdcl (RIKEN) and cuth (Columbia U)

UK: ARCHER, Cirrus (EPCC) and DiRAC (UKQCD)