Update on the lattice calculation of direct CP-violation in K decays

(aka “Update on K=>pi pi & All That”)

Christopher Kelly & Tianle Wang
(RBC & UKQCD collaborations)

Lattice X IF 2019
Wednesday September 25th 2019, BNL, USA
The RBC & UKQCD collaborations

BNL and BNL/RBRC
Yasumichi Aoki (KEK)
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Meifeng Lin
Aaron Meyer
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni

University of Connecticut
Tom Blum
Dan Hoying (BNL)
Luchang Jin (RBRC)
Cheng Tu

BNL and BNL/RBRC
Bigeng Wang
Tianle Wang
Yidi Zhao

University of Connecticut
Nicolas Garron

MIT
David Murphy

Peking University
Xu Feng

UC Boulder
Oliver Witzel

Columbia University
Ryan Abbot
Norman Christ
Duo Guo
Christopher Kelly
Bob Mawhinney
Masaaki Tomii
Jiqun Tu

Edinburgh University
Peter Boyle
Luigi Del Debbio
Felix Erben
Vera Gülpers
Tadeusz Janowski
Julia Kettle
Michael Marshall
Fionn Ó hÓgáin
Antonin Portelli
Tobias Tsang
Andrew Yong
Azusa Yamaguchi

UAM Madrid
Julien Frison

University of Liverpool
Nicolas Garron

University of Regensburg
Christoph Lehner (BNL)

University of Southampton
Nils Asmussen
Jonathan Flynn
Ryan Hill
Andreas Jüttner
James Richings
Chris Sachrajda

Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)
Motivation and previous result
Motivation

- Likely explanation for matter/antimatter asymmetry in Universe, baryogenesis, requires violation of CP.
- Amount of CPV in Standard Model appears too low to describe measured M/AM asymmetry: tantalizing hint of new physics.
- Direct CPV first observed in late 90s at CERN (NA31/NA48) and Fermilab (KTeV) in $K^0 \rightarrow \pi\pi$:

 \[\eta_{00} = \frac{A(K_L \rightarrow \pi^0\pi^0)}{A(K_S \rightarrow \pi^0\pi^0)}, \quad \eta_{+-} = \frac{A(K_L \rightarrow \pi^+\pi^-)}{A(K_S \rightarrow \pi^+\pi^-)}.\]

 \[\text{Re}(\epsilon'/\epsilon) \approx \frac{1}{6} \left(1 - \left| \frac{\eta_{00}}{\eta_{\pm}} \right|^2 \right) = 16.6(2.3) \times 10^{-4} \quad \text{(experiment)}\]

- Small size of ϵ' makes it particularly sensitive to new direct-CPV introduced by many BSM models.
- In terms of isospin states: $\Delta I=3/2$ decay to $I=2$ final state, amplitude A_2
 $\Delta I=1/2$ decay to $I=0$ final state, amplitude A_0

 \[A(K^0 \rightarrow \pi^+\pi^-) = \sqrt{\frac{2}{3}} A_0 e^{i\delta_0} + \sqrt{\frac{1}{3}} A_2 e^{i\delta_2},\]

 \[A(K^0 \rightarrow \pi^0\pi^0) = \sqrt{\frac{2}{3}} A_0 e^{i\delta_0} - 2\sqrt{\frac{1}{3}} A_2 e^{i\delta_2}.\]

 \[\omega = \frac{\text{Re}A_2}{\text{Re}A_0}, \quad \epsilon' = \frac{i\omega e^{i(\delta_2-\delta_0)}}{\sqrt{2}} \left(\frac{\text{Im}A_2}{\text{Re}A_2} - \frac{\text{Im}A_0}{\text{Re}A_0} \right)\]

 (δ_i are strong scattering phase shifts.)
Overview of calculation

- Hadronic energy scale $\ll M_W$ – use weak effective theory.

- $K \to \pi\pi$ decays require single insertion of $\Delta S=1$ Hamiltonian:

$$H_{W}^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud}^* V_{us} \sum_{j=1}^{10} [z_j(\mu) + \tau y_j(\mu)] Q_j$$

10 effective four-quark operators

Perturbative Wilson coeffs.

Renormalization matrix (mixing)

Use RI-SMOM and convert to MSbar perturbatively

LL finite-volume correction

$$\tau = - \frac{V_{ts}^* V_{td}}{V_{us}^* V_{ud}} = 0.0014606 + 0.00060408i$$

Imaginary part solely responsible for CPV (everything else is pure-real)

$$A^I = F \frac{G_F}{\sqrt{2}} V_{ud} V_{us} \sum_{i=1}^{10} \sum_{j=1}^{7} \left[(z_i(\mu) + \tau y_i(\mu)) Z_{i,j}^{\text{lat}} \to \overline{\text{MS}} M_j^{I,\text{lat}} \right]$$

$$M_j^{I,\text{lat}} = \langle (\pi\pi)_I | Q_j | K \rangle \text{ (lattice)}$$
Summary of published results

- \(A_2 \) computed on RBC/UKQCD 64\(^3 \times 128 \) and 48\(^3 \times 96 \) 2+1f Mobius DWF ensembles with the Iwasaki gauge action and physical pion mass.
- \(a^{-1} = 2.36 \text{ GeV} \) and 1.73 GeV resp - continuum limit taken.
- Statistical errors sub-percent, dominant systematic errors due to truncation of PT series in computation of RI-SMOM to MSbar matching and Wilson coefficients.
- 10\% and 12\% total errors on Re(\(A_2 \)) and Im(\(A_2 \)) resp.

- \(A_0 \) computed on 216cfgs of 32\(^3 \times 64 \) Mobius DWF with Iwasaki+DSDR gauge action and physical pion mass.
- G-parity BCs in 3 directions to give physical kinematics.
- Single, coarse lattice with \(a^{-1} = 1.38 \text{ GeV} \) but large physical volume to control FV errors.
- 21\% and 65\% stat errors on Re(\(A_0 \)) and Im(\(A_0 \)) due to disconn. diagrams and, for Im(\(A_0 \)) a strong cancellation between \(Q_4 \) and \(Q_6 \).
- Dominant, 15\% systematic error is due again to PT truncation errors exacerbated by low renormalization scale 1.53 GeV.
Result for ε'

- $\text{Re}(A_0)$ and $\text{Re}(A_2)$ from expt.
- Lattice values for $\text{Im}(A_0)$, $\text{Im}(A_2)$ and the phase shifts

$$\text{Re} \left(\frac{\varepsilon'}{\varepsilon} \right) = \text{Re} \left\{ \frac{i\omega e^{i(\delta_2-\delta_0)}}{\sqrt{2\varepsilon}} \left[\frac{\text{Im} A_2}{\text{Re} A_2} - \frac{\text{Im} A_0}{\text{Re} A_0} \right] \right\}$$

$$= 1.38(5.15)(4.43) \times 10^{-4}, \quad \text{(calculated)}$$

$$16.6(2.3) \times 10^{-4}, \quad \text{(experiment)}$$

- Error is dominated by that on A_0.
- Total error on $\text{Re}(\varepsilon'/\varepsilon)$ is $\sim 3x$ the experimental error.
- Result is in tension with Standard Model at 2.1σ level.
The “ππ puzzle” and multi-operator fits
On the importance of the $\pi\pi$ state

- Understanding $I=0 \pi\pi$ system is crucial:
 - Energy is needed for time dependence of correlation function from which we extract finite-volume $K \to \pi\pi$ matrix element.
 - Phase shift enters Lellouch-Luscher finite-volume correction to matrix element.
 - Phase shifts also enter in formula relating A_{\perp} to ϵ' itself

- 2015 calculation of δ_0 in 2σ tension with dispersion theory calculation:
 $$\delta_0 = 23.8(4.9)(2.2)^\circ \text{ (latt)}$$
 $$= 34^\circ \text{ (G.Colangelo et al)}$$

- This observation prompted increased focus on $\pi\pi$ system.
Increased statistics

- To resolve the “pi-pi puzzle” we increased statistics from 216 to 1438 (a 6.6x increase!). However this did not resolve the situation:

\[
\delta_0 = 23.8(4.9)(2.2)^\circ \rightarrow 19.1(2.5)(1.2)^\circ
\]
Resolving the pi-pi puzzle

- Most likely explanation is excited state contamination masked by rapid growth of statistical errors.
- To resolve this we turned to multi-operator fits which provide much greater resolution on excited states time dependence alone.
- Obtain parameters by simultaneous fitting to matrix of correlation functions

\[C_{ij}(t) = \langle 0|O_i^\dagger(t)O_j(0)|0\rangle = C + \sum_{\alpha} A_{i,\alpha} A_{j,\alpha} e^{-E_\alpha t} \]

- Increased from 1 → 3 operators: \(\pi\pi(111) \quad \pi\pi(311) \quad \sigma \) [cf T.Wang Monday]
- 741 configurations measured with 3 operators.

round-the-world single pion propagation small compared to errors - drop
Effect of multiple operators on $\pi\pi$

Result compatible with dispersive value t_{min} of fit

Preliminary results only

Stat Errs Only

Fitted energy (lattice units)

From dispersion theory + expt. data

Result compatible with dispersive value
Effect of multiple operators on $K \rightarrow \pi\pi$ (case I)

[741 configs PRELIMINARY]

Ground-state projected data

$\pi\pi(111)+\sigma$

$\pi\pi(111)+\pi\pi(311)+\sigma$

$\pi\pi(111)$
Effect of multiple operators on $K \to \pi\pi$ (case II)

Dramatic improvement in both precision and plateau quality!

[741 configs PRELIMINARY]
Other systematic error improvements
Systematic error improvements

<table>
<thead>
<tr>
<th>Description</th>
<th>Error</th>
<th>Description</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite lattice spacing</td>
<td>12%</td>
<td>Finite volume</td>
<td>7%</td>
</tr>
<tr>
<td>Wilson coefficients</td>
<td>12%</td>
<td>Excited states</td>
<td>≤ 5%</td>
</tr>
<tr>
<td>Parametric errors</td>
<td>5%</td>
<td>Operator renormalization</td>
<td>15%</td>
</tr>
<tr>
<td>Unphysical kinematics</td>
<td>≤ 3%</td>
<td>Lellouch-Lüscher factor</td>
<td>11%</td>
</tr>
<tr>
<td>Total (added in quadrature)</td>
<td></td>
<td></td>
<td>27%</td>
</tr>
</tbody>
</table>

NPR+Wilson Coefficients

- NPR error large due to use of 1-loop PT to match to MSbar at low, 1.53 GeV renormalization scale.
- Since 2015 have improved NPR error 15% → 8% (preliminary) by increasing scale to 2.29 GeV using step-scaling procedure.
- Inclusion of dim.6 gauge-invariant operator G_1 which mixes with Q_i under renormalization, effects demonstrated to be %-scale as expected.
- Do not expect significant improvement in Wilson coeffs error from scale increase as it is overshadowed by use of PT to cross the charm threshold (1.29 GeV).
- Working on circumventing this by computing 3 → 4 flavor matching non-perturbatively.
- Requires $\mu \ll m_c$. At these low energies, MOM-scheme NPR severely hampered by increased mixing with tower of gauge-noninvariant operators.
- Circumvent using position-space NPR which does not require gauge fixing.

[RBC&UKQCD PRL 115 (2015) 21, 212001]
[cf Masaaki Tomii Tuesday]
Related projects on the horizon:

- Performing calculation taking advantage of modern multi-operator techniques to fit excited-state $\pi\pi\pi$ contributions directly, without G-parity BCs. [Cerdà-Sevilla, Gorbahn, Jäger, Kokulu]
- Laying the groundwork for non-perturbatively computing the effects of isospin breaking and electromagnetism. [EPJ Web Conf. 175 (2018) 13016]
Advances in statistical techniques
Dealing with autocorrelations

- With increased statistics we now have evidence for (limited) autocorrelation effects: $\tau_{\text{int}} \sim 4$ MDTU (1 cfg).
- Naively expect $\sim 1.4x$ larger errors.
- Standard approach is to bin (average) data over blocks sufficiently large to make the blocks independent.

- Pion and kaon energies behave as expected with binning
\(I=0 \, \pi \pi \, 2\text{pt function}\)

- \(\pi \pi\) errors continue growing with bin size and do not stabilize. Why?
- Covariance matrix is 66x66 here!
- As bin size increased, fewer data points enter determination of covariance matrix, matrix becomes less and less well resolved.
- Fluctuations of low eigenvalues increase, causing error growth unrelated to autocorrelation.
Scrambled data

- Isolate effect of loss of resolution of covariance matrix by randomly scrambling data to destroy autocorrelations

- Error growth essentially the same!
To prevent loss of resolution of covariance matrix while still taking into account autocorrelations, we perform **block jackknife**.

Regular, binned jackknife: generate n/B "reduced ensembles" of $n/B-1$ numbers by successively dropping values.

With binning, covariance matrix obtained from just $n/B-1$ numbers.
Block jackknife II

block jackknife: From \textit{unbinned} data generate n/B reduced ensembles but of size $n-B$ values by throwing away successive \textbf{blocks} of size B

\begin{itemize}
 \item Covariance matrix obtained from $n-B$ values!
 \item Jackknife procedure ensures correct statistical error
\end{itemize}
$I=0$ ππ 2pt function with block jackknife

Now obtain expected behavior
Goodness of fit

- Large number (741) of configurations encourages more sophisticated statistical techniques.
- In particular, well-controlled correlated fits allow for reliable goodness-of-fit metrics which aid fitting and systematic error estimation.
- Goodness-of-fit described by a p-value - the probability of getting a worse fit allowing for only statistical fluctuations.

With covariance matrix obtained from sample covariance:

\[
C_{tt'} = \frac{1}{n(n-1)} \sum_{i=1}^{n} [v_{i,t} - \bar{v}_t] [v_{i,t'} - \bar{v}_{t'}]
\]
P-value issues

- Despite high degree of stability under changing fit ranges, goodness of fit for $\pi\pi$ typically quite poor.

- Importance of reliable $\pi\pi$ fits strongly motivates resolving this issue.

- Key is to recognize that the χ^2 distribution does not account for fluctuations in the covariance matrix over the population.

- When cov. mat. is determined from data, finite statistics effects broaden the distribution of q^2 as the matrix fluctuates along with the data.

- For ensembles of uncorrelated Gaussian data (not QCD path integral-distributed!) the corrected distribution can be determined analytically: It is the Hotelling T^2 distribution, $T^2(k, n-1)$ for n samples.

- However in general there is no analytic result.

- Even if we assume Gaussian data, numerical tests indicate strong autocorrelation effects that can only be removed by binning to large bin sizes (a no-go for us!).
Non-overlapping block bootstrap (NBB)

- The **bootstrap** technique allows us to estimate properties of the population from just one ensemble, by randomly resampling (with replacement).

- The (non-overlapping) block variant resamples blocks rather than single configurations, much like block jackknife, in order to account for autocorrelations:
Computing p-values via bootstrap

- Use NBB to directly compute the distribution of q^2!
 - No normality assumption
 - Blocking accounts for autocorrelations without binning
- Minor subtlety: bootstrap ensemble means \overline{b}^α distributed about ensemble mean $\overline{\mathcal{V}}$ *not population mean*
- Results in broader distribution of q^2 with larger mean
- Correct by “recentering”: $\overline{b}^\alpha(t) \rightarrow \overline{b}^\alpha(t) + [f(t, \bar{p}) - \bar{e}(t)]$

Gaussian data, no autocorrelations, 400 samples
I=0 ππ fit bootstrap p-value

The graph shows the relationship between block size and p-value. As the block size increases, the p-value also increases, indicating a stronger fit in the bootstrap analysis.
p-values for uncorrelated fits!

- Conventional wisdom is that one cannot obtain the goodness-of-fit for uncorrelated fits. Using the bootstrap technique we can!

\[
q^2 / \text{dof} = 0.4 \pm 0.2
\]
Conclusions
Conclusions

- Multi-operator techniques appear to resolve discrepancy with dispersive prediction for $I=0$ $\pi\pi$ phase shift.
- Marked improvement in quality of plateaus in $K\rightarrow\pi\pi$, better control over excited state systematics.
- Programmes for reducing other systematic errors in progress.
- Already achieved 2x improvement in NPR error via step scaling.
- Potential near-term reduction in Wilson coeff. systematic through NNLO PT calculation. In longer term we aim for a non-perturbative matching through the charm threshold.
- Advanced statistical techniques allow for more reliable p-values and enable us to account for mild autocorrelation effects without exploding our statistical error through binning.
- Expect no further hurdles to completion of project and we aim to publish within the next few months.

Thank you!
Is the Hotelling distribution sufficient?

- Numerical experiments with fake data show Hotelling T^2 relatively tolerant of non-normality.

- **However** T^2 relies on independent configurations: *extremely* sensitive to autocorrelations.

- Even with binning, slow convergence to true distribution:

 ![Graph showing convergence](image)

 - Fake gaussian data
 - 400 configs, sep ~ $\tau_{int}=5$
 - (Metropolis algorithm)

 - $B=1$, $B=2$, $B=4$, $B=8$, $B=12$

- Wish to avoid binning due to explosion in statistical error from reduced resolution of covariance matrix
Demonstration II - log-normal

400 cfgs, log-normal

μ=0 σ=0.7

Stat error and bias fall as $n, B \to \infty$ ($B \ll n$)

No autocorrelations

Autocorrelations, cfg sep $\sim \tau_{int}$