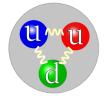
Longitudinal Double-spin Asymmetry for Inclusive Jet and Dijet Production in pp Collisions at $\sqrt{s}=510~{ m GeV}$

Zilong Chang

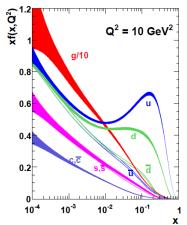
Brookhaven National Laboratory, Upton, New York 11973

September 10th, 2019

Outline


- Introduction
 - Parton distribution function
 - Gluon polarization in the proton
- Longitudinal double-spin asymmetry for inclusive jet and dijet production in pp collisions at $\sqrt{s} = 510 \text{ GeV}$
 - Jet reconstruction
 - Underlying events contribution to jet p_T and A_{LL}
 - Inclusive jet and dijet A_{LL} results
- Other inclusive jet and dijet A_{LL} measurements and STAR forward upgrade
- Conclusion

Introduction


The Proton Structure

Constituents: quarks and gluons

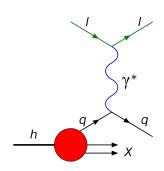
- Parton distribution functions: $f(x, Q^2)$, the probability of a probe at momentum transfer Q^2 encountering a parton in the proton with momentum fraction x
- gluons dominate at low x

• $xf(x, Q^2 = 10 \text{ GeV}^2) \text{ vs. } x \text{ for}$ quarks and gluons, MSTW, EPJC63, 189

What about proton spin?

The Proton Spin

Proton spin sum rule:

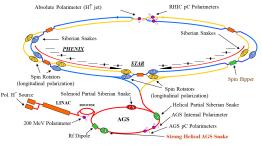

$$S_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q,g}$$

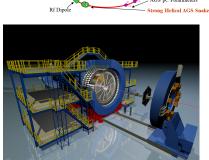
Deep inelastic scattering:

Quark contribution ΔΣ: constrained

$$\Delta\Sigma=0.254\pm0.042$$
, Leader et al, PRD 82, 114018

- Gluon contributions ΔG : poorly constrained Fixed targets experiments \rightarrow Limited in $x-Q^2$ space Constrained through scaling violation
- L_{a,g}: not constrained



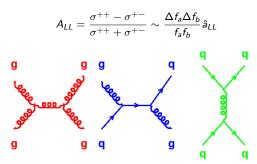

Hadron-hadron scattering:

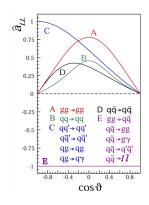
Asymptotic freedom at short distances \rightarrow parton-parton scattering

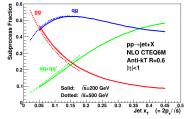
Direct access of gluons

RHIC and STAR Detectors

- One and only polarized hadron collider
- Beam polarization measurements: H-jet and pC polarimetor
- STAR detector: 2π in azimuthal ϕ , and η up to 3.9


- Tracking with TPC: $|\eta| < 1.3$
- EM energy and triggering with: BEMC: $-1.0 < \eta < 1.0$.


EEMC: $1.0 < \eta < 1.0$


- Relative luminosity monitoring detectors:
 - VPD, BBC and ZDC

Exploring Gluon Polarization at RHIC

• Define longitudinal double-spin asymmetry A_{LL} for Jets:

• gg and qg dominate jet production + large $\hat{a}_{LL} \rightarrow$ making A_{LL} for jets sensitive to gluon polarization

Mukherjee and Volgelsang, PRD86, 094009

Longitudinal Double-spin Asymmetry A_{LL} for Jets

- Measure number of jets when beams have the same and the opposite helicity, N⁺⁺ and N⁺⁻
- Given $P_{\mathcal{B}(Y)}$: beam polarizations, and $R = \frac{L^{++} + L^{--}}{L^{+-} + L^{-+}}$: relative luminosity

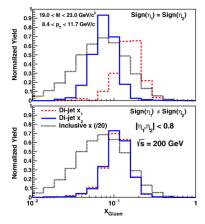
$$A_{LL} = \frac{1}{P_B P_Y} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

 Maximum likelihood estimator from data collected during multiple short periods, runs:

$$A_{LL} = \frac{\sum_{run} P_B P_Y (N^{++} - RN^{+-})}{\sum_{run} P_B^2 P_Y^2 (N^{++} + RN^{+-})}$$

Inclusive Jet and Dijet Measurements

STAR has measured a series of inclusive jet and dijet A_{IJ} at $\sqrt{s}=200 \text{ GeV}$


Inclusive jets:

$$x pprox \mathbf{x_T} e^{\pm \eta}$$
 $\mathbf{x_T} = \frac{2\mathbf{p_T}}{\sqrt{\mathbf{s}}}$

 Dijets: two jet correlation unfolds x₁ and x₂ at the leading order

$$egin{aligned} x_1 &= rac{1}{\sqrt{s}} (p_{T,3} e^{\eta_3} + p_{T,4} e^{\eta_4}) \ &x_2 &= rac{1}{\sqrt{s}} (p_{T,3} e^{-\eta_3} + p_{T,4} e^{-\eta_4}) \ &M &= \sqrt{x_1 x_2 s} \ |cos heta^*| &= tanh rac{|\eta_3 - \eta_4|}{2} \end{aligned}$$

• x_g as low as ~ 0.05

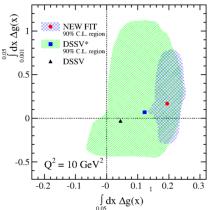
• Sampled x_g distributions by inclusive jet and dijets at $\sqrt{s} = 200$ GeV STAR, PRD 95, 071103(R)


Dijet η topology samples different x_1 and x_2 distributions and $\cos\theta^*$ binings, therefore constrains the shape of $\Delta g(x)$ as function of x and \sqrt{s} or η increases, x decreases

STAR 2009 Inclusive Jet and Dijet A_{LL} Results at $\sqrt{s}=200~{ m GeV}$

• Inclusive jet A_{LL} in two $|\eta|$ bins: $|\eta| < 0.5$ and $0.5 < |\eta| < 1.0$, STAR,

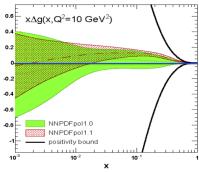
PRL115, 092002 0.07 STAR 2009 0.06 p+p → Jet+X √s=200 GeV 0.05 0.04 ₽ 0.03 |n| < 0.50.02 0.01 -0.01 0.07 **BB10** DSSV 0.06 - LSS10p 0.05 LSS10 NNPDF 0.04 ₽ 0.03 $0.5 < |\eta| < 1$ 0.02 0.01 +6.5% scale uncertainty -0.01 Parton Jet p _ (GeV/c)


• Dijet A_{LL} in $|\eta| < 0.8$, barrel region, with two η topologies: $\eta_3\eta_4 > 0$ and

Impact of STAR 2009 Inclusive Jet Results

DSSV. PRL113, 012001

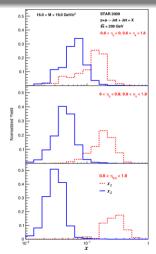
•
$$\int_{0.001}^{0.05} dx \Delta g(x)$$
 vs. $\int_{0.05}^{1} dx \Delta g(x)$



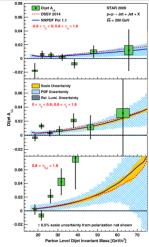
The vertical uncertainty much larger

than the horizontal uncertainty

NNPDF, NPB887, 276


$$\bullet \ \, x\Delta g(x,Q^2) \,\, {\rm vs.} \,\, x \,\, {\rm at} \,\, Q^2 = 10 {\rm GeV^2}$$

• Uncertainty on $x\Delta g$ still large when x < 0.05


Even though positive ΔG at x > 0.05, to constrain $x\Delta g$ at x < 0.05 better: increasing \sqrt{s} or extending forward in η or both.

STAR 2009 Endcap Dijet Results at $\sqrt{s} = 200$ GeV

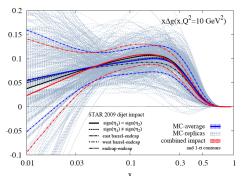
• Sampled x_1 and x_2 distributions for η topologies when

$$16 < M_{inv} < 19 \text{ GeV}/c^2$$

Dijet A_{LL} for η topologies
 vs. dijet M_{inv}

- Requiring at least one jet in $0.8 < \eta < 1.8$, endcap region
- Three η topology bins:

EB-E:
$$-0.8 < \eta_3 < 0$$
, $0.8 < \eta_4 < 1.8$ WB-E: $0 < \eta_3 < 0.8$,


$$0.8 < \eta_4 < 1.8$$
 E-E: $0.8 < \eta_{3.4} < 1.8$

• Reach x_g down to 0.01

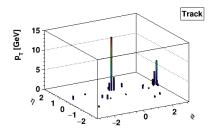
STAR, PRD 98, 032011

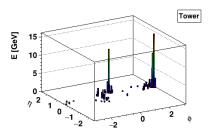
Impact of STAR Dijet Results at $\sqrt{s} = 200 \text{ GeV}$

- $x\Delta g(x, Q^2)$ vs. x, 0.01 < x < 1 at $Q^2 = 10 \text{GeV}^2$
- ullet 2 topologies from dijets within $|\eta| <$ 0.8 and 3 topologies from endcap dijets
- Before including STAR dijet results (STAR 2009 inclusive jet results included)
- After including STAR dijet results combined

• The DSSV study shows: $\int_{0.01}^{1} \Delta g(x, Q^2 = 10 \, \text{GeV}^2) = 0.296 \pm 0.108$ de Florian et al., arXiv:1902.10548 [hep-ph]

Uncertainty on $x\Delta g$ still large at x < 0.01, higher \sqrt{s} ?

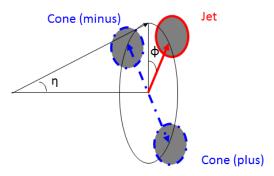

Longitudinal double-spin asymmetry for inclusive jet and dijet production in pp collisions at $\sqrt{s} = 510 \text{ GeV}$ STAR, Phys. Rev. D 100, 052005


Highlights from $\sqrt{s} = 510$ GeV Analysis

Differences and improvements from $\sqrt{s} = 200 \text{ GeV}$

- First measurements at $\sqrt{s} = 510 \text{ GeV}$
- Optimized trigger to sample low p_T jets according to luminosity increase
- Underlying events correction on jet p_T and its effect on A_{LL}
- Improved Monte Carlo tune to reproduce data better
- Much reduced trigger bias and reconstruction uncertainty
- Finer η topology binning for dijet A_{LL}
- Correlation matrix provided for inclusive jet and dijet A_{LL} results

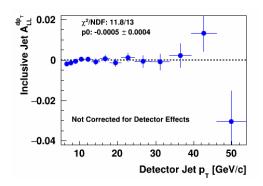
Jet Reconstruction



- Dataset: STAR 2012 longitudinally polarized pp at $\sqrt{s} = 510$ GeV
- Integrated luminosity: 82 pb⁻¹
- Inputs: charged tracks + electro-magnetic towers
- Triggers: B/E-EMC based jet patch triggers, three triggers with different thresholds, 5.4, 7.3 and 14.4 GeV, JP0, JP1 and JP2, optimized to sample low p_T jets that are sensitive to low x_g
- Algorithm: anti- k_T algorithm with R=0.5, helps to reduce soft background and pileup events in the higher \sqrt{s} environment

Underlying Event Correction to Jet Transverse Energy

• Two off-axis cones centered at $\pm \frac{\pi}{2}$ away in ϕ and the same η relative to a given jet are used to estimate underlying event for that jet, ALICE, PRD 91, 112012



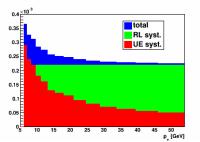
- The underlying event correction on jet transverse momentum: $dp_T = \frac{1}{2}(\rho_{plus} + \rho_{minus}) \times A_{jet}$, jet-by-jet
- Scan η dependence of underlying events
- ullet Allow to study the underlying event contribution to jet A_{LL}

Effects of Underlying Events on Measured Jet A_{LL}

ullet Define underlying event correction dp_T longitudinal double-spin asymmetry:

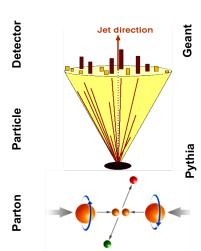
$$A_{LL}^{dp_T} = \frac{1}{P_A P_B} \frac{\langle dp_T \rangle^{++} - \langle dp_T \rangle^{+-}}{\langle dp_T \rangle^{++} + \langle dp_T \rangle^{+-}}$$

• Underlying event correction dp_T asymmetries are consistent with zero


Underlying Event Systematics on Jet A_{LL}

• Given average underlying event correction $< dp_T >$ and $A_{LL}^{dp_T}$, potential effect of the underlying event correction, dp_T , on jet A_{LL} :

$$\delta A_{LL} = \frac{ \begin{matrix} \rho_{T,max} - < d\rho_{T} > \times A_{LL}^{d\rho_{T}} \\ \int \\ \rho_{T,min} - < d\rho_{T} > \times A_{LL}^{d\rho_{T}} \end{matrix}}{ \begin{matrix} \rho_{T,max} + < d\rho_{T} > \times A_{LL}^{d\rho_{T}} \\ \rho_{T,min} + < d\rho_{T} > \times A_{LL}^{d\rho_{T}} \end{matrix}} \frac{d\sigma}{d\rho_{T}} d\rho_{T}$$


$$= \frac{ \begin{matrix} \rho_{T,min} - < d\rho_{T} > \times A_{LL}^{d\rho_{T}} \\ \rho_{T,max} - < d\rho_{T} > \times A_{LL}^{d\rho_{T}} \end{matrix}}{ \begin{matrix} \rho_{T,max} + < d\rho_{T} > \times A_{LL}^{d\rho_{T}} \\ \rho_{T,min} - < d\rho_{T} > \times A_{LL}^{d\rho_{T}} \end{matrix}} \frac{d\sigma}{d\rho_{T}} d\rho_{T} + \int \frac{d\sigma}{d\rho_{T}} d\rho_{T} \\ \rho_{T,min} - < d\rho_{T} > \times A_{LL}^{d\rho_{T}} \end{matrix}}{ \begin{matrix} \rho_{T,min} + < d\rho_{T} > \times A_{LL}^{d\rho_{T}} \\ \rho_{T,min} + < d\rho_{T} > \times A_{LL}^{d\rho_{T}} \end{matrix}} \frac{d\sigma}{d\rho_{T}} d\rho_{T}$$

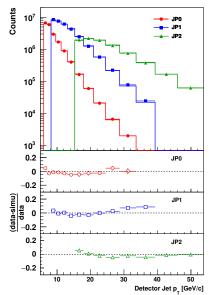
Underlying events shifting the jet cross section differently in the ++ and +- configurations by $\mp < dp_T > \times A_{LL}^{dp_T}$.

- Assign as a systematic uncertainty to measured jet A_{II} as a function of jet p_T
- Underlying event systematic uncertainty is at the level of 10⁻⁴
- Comparable in size with the relative luminosity uncertainty

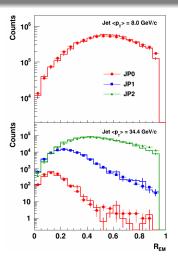
STAR Jet Simulations

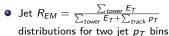
- Systematics study: PYTHIA + GEANT + Zero-bias events as embedding sample
- Data-driven modified PYTHIA Perugia Tune
- Jet reconstruction at three levels: from the embedding sample detector jets and from PYTHIA particle and parton jets

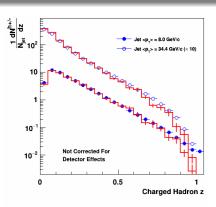
Monte Carlo Tune Study


- ullet Tuning based on matching between PYTHIA simulation and previous STAR charged π^\pm spectrum measurements STAR, PLB 637, 161 and STAR, PRL 108, 072302
- Default Perugia 2012 tune except a smaller p_{T,0} scale parameter,

$$P_{90} = 0.213$$
 default 0.24


$$\sigma \sim rac{1}{(p_T^2 + p_{T,0}^2)^2}$$
 $p_{T,0} = p_{T,ref} imes (rac{\sqrt{s}}{\sqrt{s_{ref}}})^{P_{90}}$

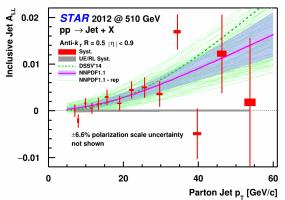

- Reduce multiple parton interaction contribution
- Jet spectrum comparison for three jet patch triggers, JP0, JP1 and JP2


Markers: data and lines: simulation

Jet Neutral Energy Fraction and Charged Hadron z Comparison

 Distributions of the longitudinal momentum fraction, z, of charged hadrons within jet for two jet p_T bins

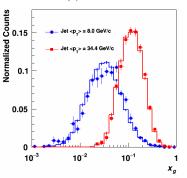
Simulation reproduces jet and its substructure variables well.

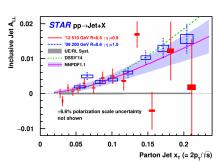

Systematic Uncertainty and Corrections

- Jet p_T and dijet M_{inv} are corrected back to parton level to facilitate the comparison between our results and recent NLO theoretical calculations
 - Through matching detector jets to parton jets in the embedding sample, $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.5$
- Trigger bias and reconstruction correction and systematic uncertainty
 - Taking the difference of predicted jet A_{LL} between the unbiased parton level A_{LL} and the biased detector level A_{LL} , $\delta A_{LL} = A_{LL,parton} A_{LL,detector}$
 - ullet Calculating δA_{LL} from published 100 replicas from the NNPDFpol1.1
 - The average of δA_{LL} taken as the correction on measured A_{LL}
 - ullet The RMS of δA_{LL} taken as the systematic uncertainty on A_{LL}

STAR 510 GeV Inclusive Jet A₁₁ Results

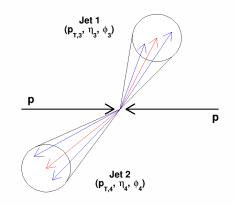
• Inclusive jet A_{LL} vs. parton jet p_T at $\sqrt{s} = 510$ GeV, STAR, Phys. Rev. D 100,


052005

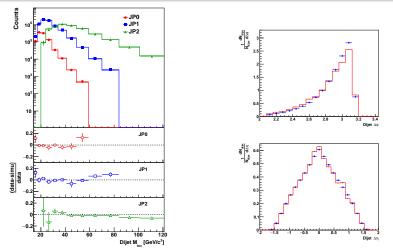

- Lowest measured jet p_T bin: $6.0 < p_T < 7.0$ GeV/c corresponding to parton jet $p_T = 7.02 \pm 0.26$ GeV/c
- \bullet Much reduced systematic uncertainty than the previous measurements at $\sqrt{s}=200~{\rm GeV}$
- Agree well with recent polarized PDF predictions, which is consistent with 200 GeV findings and implies positive ΔG

STAR 510 GeV Inclusive Jet A_{II} Measurements

• Sample x_g distributions for two jet p_T bins, with $< p_T >= 8.0$ and 34.4 GeV/c



• Inclusive jet A_{LL} vs. jet $x_T = \frac{2p_T}{\sqrt{s}}$ together with 2009 200 GeV results


- At $\sqrt{s} = 510$ GeV, be able to measure jet A_{LL} at $x_T < 0.05$
- In the overlapping $x_T = \frac{2p_T}{\sqrt{s}}$ region, both results agree well
- Allow to access x_g as low as 0.015

Dijet Event at $\sqrt{s} = 510 \text{ GeV}$

- Opening angle $\Delta\phi=\phi_3-\phi_4>\frac{2\pi}{3}$, remove hard gluon emissions $|\Delta\eta|=|\eta_3-\eta_4|<1.6$, limit detector acceptance
- $\frac{p_{T}^{leading}}{p_{T}^{savay}} < (6 0.08 p_{T}^{max})$, where p_{T}^{max} is the highest track p_{T} in either jet, remove fake jets that are composed nearly of a single, poorly reconstructed TPC track
- $p_{3,T} > 6 \text{ GeV/c}$, $p_{4,T} > 8 \text{ GeV/c}$, theoretical consideration

Data Simulation Comparison for Dijet Quantities

- Dijet invariant mass spectra for jet patch triggers, JP0, JP1 and JP2
- $\bullet~$ Dijet $\Delta\phi$ and $\Delta\eta$ for jet patch triggers, JP0, JP1 and JP2 combined

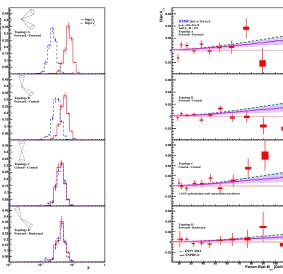
Simulation reproduces dijet variables well too.

STAR 510 GeV Dijet A_{LL} Measurements

• Dijet A_{LL} vs. invariant mass for four η topologies

A/Forward-Forward:

$$\begin{array}{c} \text{0.3} < |\eta_{3,4}| < 0.9, \ \eta_3 \cdot \eta_4 > 0 \\ \\ \text{x}_1 = \frac{1}{\sqrt{s}} (p_{T,3} \mathrm{e}^{\eta_3} + p_{T,4} \mathrm{e}^{\eta_4}) \\ \text{B/Forward-Central:} \\ \\ \text{x}_2 = \frac{1}{\sqrt{s}} (p_{T,3} \mathrm{e}^{-\eta_3} + p_{T,4} \mathrm{e}^{-\eta_4}) \\ |\rho_{3,4}| < 0.3, \ 0.3 < |\eta_{3,4}| < 0.9 \\ \text{C/Central-Central:} \\ |\rho_{3,4}| < 0.3 \\ \\ \text{D/Forward-Backward:} \end{array}$$



• Topology binning narrows the sampled x_g and the $cos\theta^*$ ranges

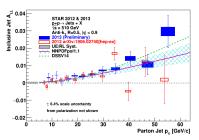
 $0.3 < |\eta_{3.4}| < 0.9, \, \eta_3 \cdot \eta_4 < 0$

STAR 510 GeV Dijet ALL Results

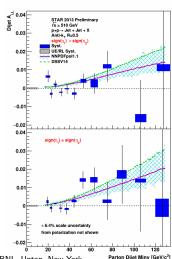
 x1 and x2 distributions sampled by dijet invariant mass bin,

$$17 < M_{inv} < 20 \text{ GeV}/c^2$$

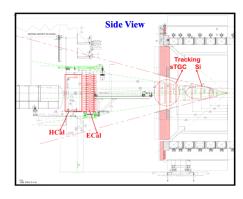
Dijet A_{LL} for η topologies vs. dijet M_{inv}


- STAR, Phys. Rev. D 100, 052005
- Dijet A_{LL} agree well with the NLO PDF model predictions
- Different sampled x₁ and x₂ distributions by four η topology bins
- Sampled x_g
 distributions much
 narrower than those
 from inclusive jets

Other inclusive jet and dijet A_{LL} measurements and STAR forward upgrade

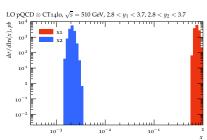

Inclusive and Dijet A_{II} from STAR 2013 510 GeV Data

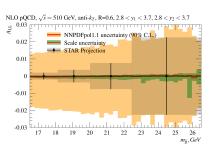
- STAR 2013 longitudinally polarized pp runs: $L = 300pb^{-1}$, and $P_{B,Y} \sim 51$, 52%
- Preliminary inclusive jet (left) and dijet (right) A_{II} from STAR 2013 510 GeV data, Quintero, arXiv:1809.00923 [nucl-ex]



- The 2012 and 2013 results agree well
- Two η topologies for dijet A_{LL} , as in 2009 200 GeV scheme
- The study of the final systematic uncertainty is underway

STAR Forward Upgrade


- STAR forward upgrade has been fully funded and approved in time for polarized 510 GeV run in 2022
- Forward Calorimeter System (FCS), an EMCal and a HCal
- Forwarding Tracking System (FTS), silicon detectors (Si) and small thin gap chamber (sTGC)
- pp, pA and AA in parallel with sPHENIX
- Lay the groundwork for the realization of the future Elector Ion Collider (EIC)

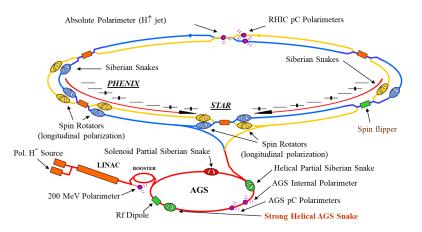

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

Dijet Measurements with STAR Forward Upgrade

• Dijet measurements with one or both jets in the forward region (2.8 $< \eta <$ 3.7) will be one of the highlighted measurements

Sampled x_1 and x_2 distributions when both jets in the forward region

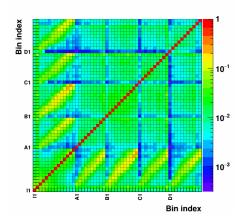
Predicted precision on dijet A_{LL} vs. invariant mass, m_{jj} with NNPDFpol1.1 model predictions


- \bullet At $\sqrt{s}=510$ GeV, with both jets in the FCS, it will provide gluon polarization at $x_{\rm F}\sim 10^{-3}$
- Significantly high precision on dijet A_{LL} comparing to the current model prediction

Conclusion

- STAR inclusive jet and dijet double-spin asymmetry measurements are unique to explore gluon polarization in the proton
 - 1 Inclusive jets constrain the magnitude of the gluon polarization
 - 2 Dijets constrain the shape of $\Delta g(x)$
- The 200 GeV results provided the first evidence of the positive gluon polarization
- The first measured 510 GeV results will extend gluon polarization down to $x\sim0.015$, STAR, Phys. Rev. D 100, 052005
- Inclusive jet and dijet A_{LL} are being studied with the larger 2013 pp data at $\sqrt{s}=510~{\rm GeV}$
- ullet The forward upgrade will provide new opportunities to probe low $x\sim 10^{-3}$ gluon polarization where the current polarized PDF studies show large uncertainties

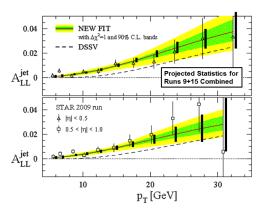
Backup


RHIC Facilities

- 120 RF bunches for each ring with 100 billion protons per bunch.
- Polarization orientation varies from bunch to bunch.
- Spin rotators provide choice of polarization orientation (longitudinal or transverse).
- Beam polarizations are around 55 to 65%

Correlations among Inclusive Jet p_T Bins and Dijet M_{inv} Bins

- Correlations arise due to:
 - Statistically in the same event, one or both of the two jets in the dijet event end up an inclusive jet
 - Systematically the way the systematic uncertainty is estimated, normally fully correlated across bins
- 14 inclusive jet p_T bins + 10 top-A dijet M_{inv} + 11 top-B dijet M_{inv} + 10 top-C dijet M_{inv} + 11 top-D dijet M_{inv} = 56 bins
- Correlations from relative luminosity uncertainty and beam polarization uncertainty not included


Longitudinally polarized pp Dataset at STAR

• Selected longitudinally polarized pp datasets at $\sqrt{s} = 200$ and 510 GeV:

Year	\sqrt{s} (GeV)	Recorded Luminosity (pb $^{-1}$)	B/Y polarization $\langle P \rangle$
2009	200	25	55
2012	510	82	50/53
2013	510	300	51/52
2015	200	52	53/57

- 2009 and 2012 data are in publication
- 2013 and 2015 data are under analysis

Increased Precision for 200 GeV Inclusive Jet A_{LL}

- ullet 2015 longitudinally polarized pp run: luminosity 52 pb^{-1} and $P_{B,Y}\sim$ 53, 57 %
- The combined results from 2015 200 GeV data and the previously published 2009 data will reduce the statistical uncertainty by a factor of 1.6

STAR Charged π^{\pm} Spectrum

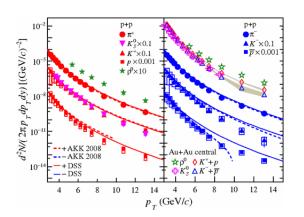


Figure: STAR charged π^{\pm} yields. STAR, PRL 108, 072302, 2012