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Outline

® Forward detection requirements at the EIC

® SRC measurements at the EIC

® Key measurements that have similar requirements



Proposed EIC implementations at JLab and BNL
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Near-beam detection could be similar




Detection of target fragments
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® Alarge part of the EIC program relies on detecting recoil baryons and target fragments

« Spatial imaging through exclusive meson/photon production on the proton, and in coherent
diffraction on nuclei

* Neutron structure through spectator tagging in light nuclei
« Various incoherent processes on heavy nuclei, including SRC and EMC studies

® Forward detection requirements for the EIC are very demanding
* Need to detect particles very near the beam (down to pt = 0 for p/pg < 99%)

* Need to detect protons with pr up to at least 1 GeV/c and spectators with A/Z very
different from that of the beam (e.g., spectator protons from deuterium)

 Need excellent momentum resolution, detection of neutrals, and PID for ions



Forward detection — processes and requirements

® Which processes drive the near-beam (small p7) acceptance?
« Coherent diffraction on light nuclei (detecting recoiling ion for clean signal)
« DIS and (in)coherent diffraction on medium- and heavy nuclei (detecting residual nucleus)

® Which processes drive the “large” angle (pr) acceptance?
« Tagging of spectator protons from nuclei
« Exclusive production of photons (DVCS) and mesons (DVMP) on the proton at large t at low energies
« Detection of photons and neutrons from nuclei (cone with line-of-sight)

® \Which processes drive the resolution?
« Magnetic spectrometer: tagging of protons from nuclei (spectators have p ~ Fermi momentum)

« Hcal (ZDC): tagging of neutrons from exclusive charged meson production on the proton and
spectator neutron tagging (e.g., for reactions on the proton in deuterium)

« EMcal: Photons from nuclear de-excitations (coherent diffraction and rare isotopes)



Near-beam acceptance using a magnetic spectrometer (large dispersion)
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® With sufficiently large dispersion (which separates off-momentum particles from the beam),
it is possible to detect even protons scattered at zero degrees or nuclei losing one nucleons.

@ Detection of intact nuclei is much harder than recoil protons, since at fixed t the larger mass
implies a smaller change in both longitudinal and transverse momentum (scattering angle)



Near-beam detection at JLab and BNL

® At JLab, a full forward spectrometer was always a key part of the MEIC (now JLEIC) concept
since its introduction in 2009.

« proton acceptance of E/Eyeam < 99% for all angles and down to 3 mrad for all energies

@ At BNL, the IR currently lacks a high-dispersion
section, limiting its potential for eA.

* However, nothing prevents BNL to add a forward
spectrometer with large dispersion.

* Implementation easier at BNL since a larger e-ring
allows reversing the order of electron and ion quads.

® |nput on from the eA community on the detection Roman pots in STAR located ~50 m
requirements is thus important and urgent downstream from the collision point



But SRCs are not a process — so where do they fit in?

® Deuterium
* As spectator tagging on the nucleon
but with sufficient acceptance for high-pr tail

« Additional pt for the struck nucleon will depend on process
and kinematics, but can be substantial -> taik by F Hauenstein

-> talk by C. Weiss

@ Lightions
« A-2 fragment(s) easy to detect, except for Z=A/2

« The latter is, however, a very important case (d, 9B, etc)
with detection challenges similar to coherent processes

® Heavy ions
« Tagging and identification of heavy fragments needed.

|~ ~
| ke ~20% > « Similar to measurements of rare isotopes at the EIC and
NIRRT . SRS helpful for coherent diffraction on heavy ions.

LOG MOMENTUM DISTRIBTION
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Traditional SRC measurements at an EIC
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SRCs have traditionally been studied at high x in
quasielastic (QE) reactions in medium- and heavy
nuclei.

— x> 1 ensures participation by more than one nucleon

—  QE process provides straightforward measurement and
easier-to-understand final-state interactions

The EIC can contribute by providing a large lever arm in
Q? at high x and detection of all target fragments — but
there are some challenges.

—  Event rates at high x are much lower than for fixed target
— Resolutions at large x deteriorate rapidly

-> talk by B. Schmookler



Gl O,

SRCs 1n DIS at lower x?
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The EMC effect (x ~ 0.5) is much easier to measure
in “typical” EIC kinematics.

But also for SRC studies at an EIC it would be natural
to seek relevant measurements in DIS (or exclusive
reactions) at lower x.

—  Can we learn something new about SRCs?

— Is it important to introduce SRCs into nuclear models
(e.qg., BeAGLE) for studies of low-x processes?

Nuclei over the full mass range will provide
important input.
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JLab LDRD-funded project for SRCs at an EIC

JLab “SRC” LDRD1912: D. Higinbotham, M. Baker, A.
Deshpande, F. Hauenstein, O. Hen, C. Hyde, V. Morozoy,
PNT, A. Schimdt, B. Schmookler, Z. Tu,L. Zheng
® Feasibility studies

@ Rates at high x F. Hauenstein

@ Resolution in x at high x B. Schmookler

® Simulations, modeling, and detection requirements

® [ncorporating SRCs into BeAGLE M. Baker

@ Detection requirements
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A more detailed look at the modified F,

F,0,09)

b EO02-019: C 1.15
[ = BCDMS: C i
6. SLAC: DEMC(C/D) o ciab i eas .
10 " T3 CCFR: Fe (£€=0.75,0.85,0.95,1.05) 1 10
1 10 100 1000
N. Fomin et al., PRL Q® (GeV)?

105, 212502 (2010)

T lIIIIlIl T lIIIllI: T Illlllll T lIIIIlII

LI llllll‘

1 10

F, recreated from N. Fomin’s
scripts by F. Hauenstein



Projected Counts

Initial rate estimates for high x (and Q?)

5x50 GeV e+C JLEIC with 6 weeks @ 100% eff. (at lower energy rates would be lower)

Nuclear DIS Events per 100/fb/N
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® Measuring the EMC
effect at high Q2 is
straightforward

® Measuring SRCs at x>1 is
challenging, but there will
be some events.
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Lab kinematics of spectator and struck neutrons at high energy

M. Baker
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And protons... struck struck p M. Baker

neutrons from e+Pb 10X40A GeV/C inelaStIC protons from e+Pb 10x40A GeV/c inelastic
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And correlations (deuteron breakup)...

struck neutron, spectator proton
lt|<0.1 GeV?, 550 < k < 600 MeV

M. Baker
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Nuclear fragments produced in eA reactions at the EIC
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® Fragment detection (“tagging”) is needed to, for instance, reconstruct the Fermi momentum of
the struck nucleon
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Detection and identification of the produced nucleil

2.6 Evolution of SPHENIX info an Electron-lon Collider Experiment 33 (n )
s o i “near” detection “far” d . a
BB Eciromagetc clvimte RICH ar” detection .
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Spectator protons

@ Detection of nuclei with rigidities (A/Z) close to that the beam
require a dedicated “far” spectrometer where the beam is
small and dispersion large.

@ But to identify the ion we need both A/Z and an independent
measurement of Z. The requirement for sensitivity in Z2 is 2%
in order to identify heavy residual nuclei down to A-1.

® A"mini-DIRC” can produce 100,000 photons (<< 1% error) in
a few mm of fused silica.

@ RA&D in progress (Generic Detector R&D for an EIC program).

Recoil protons and heavy ions

O

A “mini-DIRC” inside a Roman
pot at the downstream focus can
identify ions to ~1% in Z?
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Generalized Parton Distributions (GPDs) and 3D spatial imaging

y e+p—e+p+Jp
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-> talk by S. Fazio

® Exclusive production of a photon or meson is sensitive to GPDs

* In the limit of small “skewness” xi, the Fourier transform of t, the four-momentum transfer to the
nucleon, can be interpreted as a spatial image in impact-parameter space at different values of x

® To create a spatial image in b, data over a sufficient range in t (~ py?) are needed (~ 0-1 GeV?)
« Small t <=> large b and vice versa.
« For nuclei with A> 1, that scattering angle is much smaller for a given t, cutting the low t acceptance
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Coherent exclusive (diffractive) reactions on light nucle1
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Coherent exclusive reactions on light ions give unique access to the
3D structure of nuclei.

In contrast to heavy nuclei, scattered light nuclei can be detected
« The momentum transfer t can be determined directly from the ion

Light ions span the full range of nuclear densities

» D s the least dense nucleus unbound, while He-4 is comparable to
heavy ions, and He-3 falls in the middle

Polarized He-3 beams will allow for simultaneous measurement of
both tagged neutron structure and coherent diffraction on He-3

» Interesting comparison since spin of He-3 is dominated by the neutron

He-4 has only one GPD and large asymmetries
« Easy to measure and interpret
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2D spatial gluon 1maging 1n heavy nuclei through coherent diffraction
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® Experimental challenge: veto the large incoherent background.
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Evaluate the veto efficiency of target Sartre 10x40 e+Pb->J/y+X (smeared)
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In Q2

Kinematic reach for probing gluon saturation in DIS
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® Atlow x, the photon interacts coherently with the gluons along its path
inside a nucleus, allowing the EIC to reach into the saturation regime.

» Impact parameter tagging selects events with larger average density T(b) Qg2 ~ Al/3 [ x03 ~ T(b) * (E.EA)??
: : : : 10/3
® Alarger thickness T(b) is equivalent to a higher beam energy ro_ (TOcentrar |
« With a evaporation neutron multiplicities only, this factor is 3.2 at 1% E (T D)) minbias

« Detecting all final-state particles, this increases to 4.8 24



T(b) for 29%Pb and 238U

® Using U-238 instead of Au or Pb
further increases the equivalent
energy, from a factor 4.8 to 6.7 at
1% yield.
« U has slightly larger A than Pb

« U is a deformed nucleus. Longer
paths along the long axis

« ltis easier to align one axis in eA
than two in AA

® Afactor 6.7 is equivalent to running
untagged Pb at 740 GeV/A

® Note that detection of all
nuclear fragments, including
spectator protons, is crucial

n-Tagged ePb (samples scaled to same area)

M. Baker, 2018
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Facility for Rare Isotope Beams (FRIB)

[Fast Beam Area] Gas Stopping | | Stopped Beam Area] (Reacceleraled Beam Area]

et

................... l
[ Rieaccelerator ]

® (Close to completion at MSU

® Will produce radioactive beams
through in-flight projectile

200 feet

| T T 1 T T
50 meters

Production

fragmentation followed by
fragment separation in a el T
downstream spectrometer { |

® Focus in on neutron-rich nuclei
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Nuclei from 298Pb and 238U (1s of simulated beam time at the EIC)
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208Pp (left) produces mainly heavy isotopes from evaporation

238 (right) produces fewer, but heavier isotopes from evaporation. It also produces
very neutron-rich fission fragments (medium-mass nuclei have fewer neutrons).
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Nuclei from 298Pb and 238U (1s of simulated beam time at the EIC)
Pb-208 Pa-219

U-238
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@ 208pp (left) produces mainly heavy isotopes from evaporation

@ 238 (right) produces fewer, but heavier isotopes from evaporation. It also produces
very neutron-rich fission fragments (medium-mass nuclei have fewer neutrons).
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How “exotic” are '9'Pm and **Xe (produced in 1s of simulated beam time)?
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® Lifetime for 1"Pm: >130 ns
Lifetime for 145Xe: 188 ms

Both nuclei are very close to the most neutron-rich nuclei currently known

—and in a spot where rates at FRIB are relatively low
30



Rates at the EIC? (o0 po ¢35 rates (v.1.03) Needs further studies!

https //groups nscl.msu.eduffrib/rates/nscl_pac35_rateshtml  The rates are estimated based on
the EPAX 2.15 cross section parameterization for fragmentation and the LISE++ 3EER model for in-flight fission.
Primary beam intensities and energies have been used from the PAC35 beam list

| P0-222 . f
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A bold extrapolation

® |et's assume that we have one
"yellow-orange” event per second,
or 108 in a year, distributed over
~100 isotopes of interest

s | - o | e Further, lets assume that we can
Pt S ST e i THE use the FRIB rate estimates for the
extrapolation.

75|

Ir-201

55 |-
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ir
® Then, if we want to

35| = nguggggﬁ | — accumulate a total
1 N 3e+03 of 10,000 events for
: the isotopes of
interest, in a year

a4 we can move from
e-0 the orange-yellow to
e-10 light green (although
- for 1"Pm we are
there in 1 minute)
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Thank you!
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Backup



What do we measure? Current jet (or hadron)

Scattered \fl & ol e
electron \
1\8
UL \ \ MAGNET ".“"""
Lepton scattering on a proton / el = T | >
? 3 m |
. P/A — {em—c Target fragments
Target Inclusive DIS: only electron is detected
jet
P ° Semi-Inclusive DIS (SIDIS): electron
}Hadrons and current jet (hadron) are detected.
Current Exclusive reactions: all particles are detected

jet 34



B (m), B (m)

Detection of target fragments — forward spectrometer

2.6 Evolution of SPHENIX info an Electron-lon Collider Experiment 33
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@ Functionally, the forward detection is naturally
separated into a "near” and “far” parts

D (m)

® “Near” detection:

* Goal: off-momentum/rigidity particles or ones
scattered at "large” angles (high pt)

* Requirement. large magnet apertures

® “Far” detection (can be after a crab cavity):

* Goal: small-angle particles with momentum/rigidity
close to that of the beam

* Requirement. large dispersion and small beam size
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Effect of boosting k, to the lab frame
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® The boost makes precision measurements of nucleons moving along the z-axis
easier

« It also makes precision gamma spectroscopy of photons from nuclear de-excitations
in heavier nuclei possible.

® However, as noted earlier, this is also the reason why hadronic reconstruction
methods do not work as well for eA as they do for pA.
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E, (GeV)

Photons from 2%Pb,, in lab frame
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Density fluctuations from incoherent diffraction

® |ncoherent diffraction probes the variance of the density

« Calculations at x ~ 10-3 show "lumpiness” in the gluon
distribution and suggest sensitivity to model assumptions

® Could we in the future see the imprint of correlations from
nucleonic degrees of freedom at the partonic level?

« Experimentally straightforward, but a clear interpretation
needs much more progress on the theory side
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