Relativistic R-Matrix LRF=7 clarification

Formats proposal

- Proposal
- Clarification of $M F=2, \quad M T=151, \quad L R U=1, \quad L R F=7, \quad K R M=4 *, K R L$
- Specified in Sec. (2.2.1.6) of the ENDF-6 manual (p.69)
- LRF=7 R-Matrix Limited (RML)
- Currently only KRL=0 is well defined
- Purpose
- Clarify meaning of relativistic R-matrix parameter KRL>0
- KRL Flag is zero for non-relativistic kinematics, 1 for relativistic.
- Extend possible values to KRL>1
- Permits dissemination of EDA R-matrix parameters $K R L \neq 0$ in $M F=2$
- Points of note
$-K R L \neq 0$ is currently unused
- *KRM=4 is also unused; proposal unchanged if not
$-K R L>0$ must be clarified - many relativistic parametrizations possible

Relativistic RML R-Matrix Parametrization Proposed form KRL=1

- KRL > 0 relativisitic parametrization
- Many possible relativistic forms; here: KRL = 1
-Extensions beyond the present form for KRL > 1

$$
\begin{aligned}
& E(s)=\frac{s-m_{c_{0}}^{2}}{2 m_{c_{0}}} \longleftarrow \text { NB: Specific to } \mathrm{KRL}=1 \text {; } \\
& m_{c_{0}}=m_{c_{0}, 1}+m_{c_{0}, 2} \\
& \mathrm{c}_{0} \text { reference (first) particle-pair }
\end{aligned}
$$

Kinematics:

$$
\begin{aligned}
s & =\left(p_{c, \text { proj }}^{\mu}+p_{c, \text { targ }}^{\mu}\right)^{2}=m_{c}^{2}+2 m_{c, 2} E_{c} & E_{c^{\prime}} & =\frac{1}{m_{c^{\prime}, \operatorname{targ}}}\left[m_{c, \operatorname{targ}} E_{c}+\bar{m}_{c, c^{\prime}} Q_{c, c^{\prime}}\right] \\
E_{c} & =\sqrt{\left|\mathbf{p}_{c, \text { proj }}\right|^{2}+m_{c, \text { proj }}^{2}}-m_{c, \text { proj }} & \bar{m}_{c, c^{\prime}} & =\frac{1}{2}\left(m_{c}+m_{c^{\prime}}\right), Q_{c, c^{\prime}}=m_{c}-m_{c^{\prime}}
\end{aligned}
$$

