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Why Shape Data are Different

The basic problem:

@ Shape data (PFNS shape, probability distributions, relative
measurements, etc.) are inherently different than absolute data
(absolute cross sections, etc.)

@ Primary difference is in the covariance treatment

Typical Experimentalist Treatment:

@ | found a fully-correlated uncertainty source (beam flux, scaling factor)
@ I'm trying to report a shape result, so | can ignore it
@ | found a partially correlated uncertainty source (most sources)

o Keep it, or ignore part of it, or state that it's correlated, or something else...
@ How much do | keep? What is the covariance of the reduced uncertainty??
@ Give to evaluator and move on

A Normalization Procedure with Covariance Propagation Solves This Problem
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The Basic Idea for the Covariance Math
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Expected: Fully-Correlated Uncertainties Drop Out

Consider a covariance source of the form: o;; = f?p;p;
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Each summation adds to unity, and so

covn], = 0.
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Expected: Fully-Correlated Uncertainties Drop Out
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Maybe Unexpected: Redistribution of Covariances

Consider data set in which one data point, z, is known perfectly, so

0., =0 and o,, =0 (no uncertainty, no correlations for point z)

but, o;; # 0 foralli,j # =z

cov [ ZZ( Db ) (—%wz) ks

k#z l#z

@ This is generally non-zero, and therefore point z has nonzero
variance and covariance with other points, i, j

A well-measured data point gets a larger 1-D uncertainty assigned to it

@ Odd to most experimentalists, but the shape is properly represented
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Maybe Unexpected: Redistribution of Covariances
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Necessary: Consistency When Combining Shapes

— There are choices to make when combining shape data sets
(relevant to reporting data from Chi-Nu PFNS results)
— Only one single, correct shape exists for a set of data points
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Necessary: Consistency When Combining Shapes
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These covariances are not equal in general.
Normalize the combined data set to recover the single correct combined shape
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Necessary: Consistency When Combining Shapes
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Conclusions, Acknowledgements, References

@ Normalization # Scaling, even if scaling to have A = 1

@ Covariance propagation of normalization of an unnormalized
experimental data set yields the covariance matrix of the shape

@ Normalization is a necessary part of experimental shape data analysis
@ Experimental shapes could be misrepresented in evaluations otherwise...
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