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Why Shape Data are Different
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The basic problem:

Shape data (PFNS shape, probability distributions, relative
measurements, etc.) are inherently different than absolute data
(absolute cross sections, etc.)
Primary difference is in the covariance treatment

Typical Experimentalist Treatment:

I found a fully-correlated uncertainty source (beam flux, scaling factor)
I’m trying to report a shape result, so I can ignore it

I found a partially correlated uncertainty source (most sources)
Keep it, or ignore part of it, or state that it’s correlated, or something else...
How much do I keep? What is the covariance of the reduced uncertainty??
Give to evaluator and move on

A Normalization Procedure with Covariance Propagation Solves This Problem



The Basic Idea for the Covariance Math
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Un-norm. Covariance→

Normalized Data→

Sensitivity Matrix→

Norm. Covariance→

Correlation Matrix→
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Expected: Fully-Correlated Uncertainties Drop Out
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Consider a covariance source of the form: σij = f2pipj
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Expected: Fully-Correlated Uncertainties Drop Out
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Maybe Unexpected: Redistribution of Covariances
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Consider data set in which one data point, z, is known perfectly, so

σzz = 0 and σiz = 0 (no uncertainty, no correlations for point z)

but, σij 6= 0 for all i, j 6= z
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This is generally non-zero, and therefore point z has nonzero
variance and covariance with other points, i, j

A well-measured data point gets a larger 1-D uncertainty assigned to it

Odd to most experimentalists, but the shape is properly represented



Maybe Unexpected: Redistribution of Covariances
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Necessary: Consistency When Combining Shapes
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→ There are choices to make when combining shape data sets
(relevant to reporting data from Chi-Nu PFNS results)

→ Only one single, correct shape exists for a set of data points

Independent Axis (Energy, time, etc.)
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These covariances are not equal in general.
Normalize the combined data set to recover the single correct combined shape
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Necessary: Consistency When Combining Shapes
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Conclusions, Acknowledgements, References

Normalization 6= Scaling, even if scaling to have A = 1

Covariance propagation of normalization of an unnormalized
experimental data set yields the covariance matrix of the shape

Normalization is a necessary part of experimental shape data analysis
Experimental shapes could be misrepresented in evaluations otherwise...
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