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Motivations

• Application to depletion perturbation theory

– Recent extension (ORSEN) to TSURFER module to perform nuclear data adjustment for fixed-source prob-
lems1

• To establish methodology to generate evaluated fission product yield data with related covariances

– Is a fission product yield covariance matrix, a matrix with prescribed row/column sum?

• To establish HFIR (High Flux Isotope Reactor) as a facility relevant for nuclear data measurements

• To improve the ENDF/B-VIII.0 fission product yield sub-library

• To consistently perform uncertainty quantification analysis for fuel decay heat, radio toxicity, burn up credit

– Consistency between (cumulative and independent) product yield and decay sub-library

• Experimental database with consistently constrained correlated data

1Previously, TSURFER was only applicable to criticality problems
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Independent Fission Product Yields (IFPY)
Definitions
Independent fission product yield y from the fission of a nucleus with mass number AT and atomic number Z f

I ≡ I(A,Z,M; x⃗) with x⃗ ≡ x⃗(A f ,Z f ,E)

• For neutron-induced fission, A f = AT+1 (compound nucleus undergoing fission). For spontaneous fission, A f = AT

• For a semi-empirical model, the independent fission yield depends on a set of parameters:

x⃗ ≡ {⃗µ(A f ,Z f ,E),⃗λ (A f ,Z f ,E)}

I ≡ Y (A; µ⃗)
Sum yield

× F(A,Z ;⃗λ )
Fractional yield

× R(A,Z,M)

Isomeric ratio

Constraints
• ∑Z F(A,Z ;⃗λ ) = 1 ∀A

• ∑M R(A,Z,M) = 1 ∀A,Z

• Y (A) = ∑Z,M I(A,Z,M; x⃗) ∀A

• ∑A,Z,M I(A,Z,M; x⃗) = 2

• ∑A,Z,M A · I(A,Z,M; x⃗) = A f − ν̄(E)

• ∑A,Z,M Z · I(A,Z,M; x⃗) = Z f

• ∑AY (A; µ⃗) = 2

• ∑A A ·Y (A; µ⃗) = A f − ν̄(E)

• ∑A,Z,M Z ·F(A,Z,M;⃗λ ) ·Y (A; µ⃗) = Z f
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IFPY Uncertainties in ENDF/B-VIII.0

• ENDF/B-VIII.0 sum yield YE(A) calculated from one of the constraints YE(A) = ∑Z,M IE(A,Z,M)

• Sum yield uncertainty ∆YE(A) calculated from quadratic summation ∆YE(A) =
√

∑Z,M[∆IE(A,Z,M)]2

– ENDF/B-VIII.0 IFPYs do not have correlations, therefore related covariance matrix is diagonal

• Strategy to generate a constrained fission product yield covariance matrix

– Set of sum yields and related uncertainties, YE(A)±∆YE(A) ∀A, was used to generate randomly sampled and
constrained sets of sum yields, Y k(A) ∀A (k = 1, . . . ,N)

– Mean values ⟨Y (A)⟩= ∑N
k=1Y k(A)/N ∀A

– Covariance matrix ⟨∆Y (A) ∆Y (A′)⟩= ∑N
k=1(Y

k(A)−⟨Y (A)⟩)(Y k(A′)−⟨Y (A′)⟩)/N ∀A,A′

• Consistency checks

– The set of mean values ⟨Y (A)⟩ ∀A is constrained since the set of Y k(A) ∀A is constrained for each sweep
k = 1, . . . ,N

– |⟨Y (A)⟩−YE(A)|<< 1 ∀A
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Sum Yield Uncertainty and Constraints on 235U (thermal)
∑
A
⟨Y (A)⟩= 2 (constraint no. 1) ∑

A
⟨Y (A)⟩ A = A f − ν̄ (constraint no. 2) ∑

A
⟨Y (A)⟩ (1+A) = 2+A f − ν̄ (constraint no. 1+2)
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• No meaningful differences (<0.5%) between ENDF/B-VIII.0 sum yields YE(A) and constrained ⟨Y (A)⟩ sampled within YE(A)±∆YE(A)

• Large reduction in the sum yield uncertainty (≈ -40%) when constraints are applied to the sampled sum yields

• Rare cases where the uncertainty increased
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Sum Yield Covariance/Correlation Matrices
Constraint no. 1
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Results of the Covariance Analysis
Impact of the Constraints to the Row/Column Sums

• Covariance/correlation matrices very sparse

• Short-range correlations mainly appearing between yields at the peaks of the mass distribution

• Constraint no. 1: the results of the constrain, ∑A⟨Y (A)⟩= 2, produces a covariance matrix having zero row/column sum

• Constraint no. 2: the constrain ∑A⟨Y (A)⟩ A = A f − ν̄ does not generate a prescribed row/column sum

• Constraint no. 1+2: as in constrain no. 2

• Note: A matrix with zero row/column sum is singular
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Model for the Sum Yields
• Five Gaussian model: Y (A; µ⃗) = ∑5

i=1 Niψi

• Gaussian curves: ψi(A) = (
√

2πσi)
−1e−(A−Ai)

2/(2σ2
i )

• Symmetry conditions: A1 = (A f − ν̄)/2, A4 = 2A1−A2, A5 = 2A1−A3

• Symmetry conditions: σ2 = σ4, σ5 = σ3, N4 = N2, N5 = N3, N3 = 1−N2−N1/2

• Energy-dependent parameters: µ⃗ = {N1,σ1,N2,A2,σ2,A3,σ3}

– σi(E) = mi(E −E f )
1/2 being E = En+Bn the excitation energy and E f the fission barrier

– A1 = (A f − ν̄0)/2−βE/2 (energy dependence of the center)
– Ai>1(E) = Ai(E f )+α(E −E f )

−1/2

– N1(E) = sin2 θ1 with tanθ1 = 2(E −E1)/Γ1

– N2(E) = cos2 θ1 cos2 θ2 with tanθ2 = 2(E −E2)/Γ2

– N3(E) = (1/2)sin2 θ1+ cos2 θ1 sin2 θ2 (equivalent to N3 above)

• Model parameters: mi=1,2,3, Γi=1,2, Ai=2,3
2

• Note: the mass distribution Y (A; µ⃗) is normalized to 2 because of the condition on N3

2In this work E f=6.1 MeV, ν̄ = 2.4, α = β = 0, and the resonance energies E1=4.6 MeV, E2=17.3 MeV.
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Fitting Sum Yield Data with a Gaussian Model (Normalized to 2)
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Nonl inear leas t−squares (NLLS) Marquardt−Levenberg a lgo r i t hm

m1 = 7.89369 +/− 0.1047 (1.326%)
m2 = 3.40107 +/− 0.03528 (1.037%)
m3 = 2.25366 +/− 0.05165 (2.292%)
a2 = 141.489 +/− 0.1379 (0.09744%)
a3 = 134.352 +/− 0.1298 (0.09664%)
Γ1 = 102.018 +/− 8.371 (8.205%)
Γ2 = 25.2895 +/− 0.8446 (3.34%)

Co r re l a t i on mat r i x o f the f i t parameters :
m1 m2 m3 a2 a3 Γ1 Γ2

m1 1.000
m2 −0.061 1.000
m3 0.057 −0.564 1.000
a2 0.047 −0.879 0.685 1.000
a3 0.033 −0.656 0.760 0.787 1.000
Γ1 0.328 −0.020 0.106 0.034 0.024 1.000
Γ2 −0.057 0.829 −0.732 −0.910 −0.848 −0.060 1.000

• Small differences in the fitted model parameters when data sets with different uncertainty are used in the fit

• The theoretical sum yield uncertainties (obtained by the correlation matrix for the fitted parameters) are smaller than the fitted data
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Fitting Sum Yield Data with Gaussian Model (Normalized to 2)

Covariance matrix
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• Strong positive/negative correlations of the yields within the peaks and between the peaks

• Correlation matrix shows strong correlations for very small yields (valley and wings of the mass distribution)

• Covariance matrix has row/column with sum rule zero3

• Constraint of the sum yield produced a covariance matrix with prescribed row/column

3Deviations from zero can be seen for a few rows/columns related to very small yields of magnitude ≈ 10−11.
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Conclusions
• Numerical simulations to generate covariance matrices of constrained sum yield distributions were performed

• Monte Carlo simulations showed covariance matrices generated with sum yield distribution normalized to 2, have
zero row/column sum

– The correlations generated by applying the constraints to the sampled yields induced a reduction in the sum
yield uncertainties

• When the constraints to the yield distribution are not a linear function of the distribution, the covariance matrices
do not have zero row/column sum value

• The 5 Gaussian model implicitly defined to satisfy one of the constraints (normalized to 2) was used in a least-
square procedure

• Calculated from the covariance matrix of 7 fitted parameters and related partial derivatives, the covariance matrix
of the yield distribution obeyed the row-column sum zero rule (within numerical precision and except for very small
yields)
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Appendix : TSURFER Standard Methodology
The GLLS method in TSURFER is based on minimizing

χ2 = ∆αTC−1∆α +∆mTV−1∆m (1)

Indices : α ≡ nuclear data, m ≡ measured integral quantities, k ≡ k(α) calculated integral quantities

• ∆α = α ′−α
α : (n×1) vector of adjusted nuclear data with (n×n) relative covariance matrix C with elements Ci j =

⟨δαiδα j⟩
αi α j

• ∆m = m′−m
m : (s×1) vector of adjusted measured responses with (s× s) relative covariance matrix V with elements Vi j =

⟨δmiδm j⟩
mi m j

Eq. (1) is minimized subject to the linearity constraint S∆α −∆k = 0 (with S = (∂k(α)/∂α/(k/α))≡ S(α)). To do this, one defines the Lagrangian
function

χ2 = ∆αTC−1∆α +∆mTV−1∆m+λ (S∆α −∆k) (2)
that, subject to the further constraint that adjusted responses must agree4, i.e. k(α ′) = m′, can be written as

χ2 = ∆αTC−1∆α +∆mTV−1∆m+λ (S∆α −F ∆m+d) . (3)

Here the diagonal matrix F has matrix elements Fii = mi/ki of the ratio between measured and calculated responses and d = k−m
m is the

discrepancy vector. From the conditions ∂ χ2/∂∆α = 0 and ∂ χ2/∂∆m = 0, one has

∆α =−λCST and ∆m = λV F (4)

with λ =W−1d obtained from the uncertainty of the discrepancy vector obtained by standard error propagation

W = SCST+FV FT (5)

4In TSURFER the integral quantity k(α ′) is calculated by first order approximation as k(α ′) = k(α)+S(α)(α ′−α) = m′ assuming S(α)≈ S(α ′).
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Appendix : TSURFER Enhanced Methodology
For the adjustment of nuclear data (such as fission product yields) subject to certain physical constraints (slide 3), the Lagrangian function is
now defined by an additional term

χ2 = ∆αTC−1∆α +∆mTV−1∆m+λ (S∆α −F ∆m+d)+ λ̃ hT∆α . (6)
From the constraint hT∆α = 0 together with the conditions on the χ2, the adjusted nuclear data vector is

∆α =−C(λST+ λ̃h) (7)

and the adjusted measured responses vector ∆m is as defined as in Eq. (4). Inserting ∆α, ∆m in Eq. (5), the first Lagrangian multiplier λ is

λ =W−1(d −Shλ̃ ) . (8)

From hT∆α = 0, the condition on the second Lagrangian multiplier is

hTC (−STW−1d +STW−1Shλ̃ −hλ̃ ) = 0 , (9)

where, if hTC = 0 (meaning the zero row/column sum rule is satisfied), the TSURFER algorithm follows the standard methodology (slide 12)
and, if hTC ̸= 0, λ̃ is

λ̃ = [(STW−1S−1)h]−1 STW−1d , (10)
where h is a vector with zero and one elements.

13



Acknowledgments

This work was supported by ORNL LDRD project LOIS ID 9436

14


