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Presentation Outline

• Extant methods (linear approximation)
• Bayes theorem for generalized data
• Schematic diagram
• Framework Demonstration on U-233 integral and differential data 

– Comparison to linear approximation

• Summary and outlook
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Summary of conventional evaluation of diff. and integral data:
• Extant R-matrix resolved resonance range (RRR) evaluations assume normal 

probability density functions (PDFs) and use Newton-Raphson method to minimize 
chi2 of R-matrix and differential data only.

• R-matrix parameters are subsequently further optimized to improve the fit of neutron 
transport simulations of integral benchmark experiments (IBEs), by a generalized 
linear least squares (GLLS) of the SAMINT module of SAMMY.

• The 2 methods above are based on Bayes theorem but assume all PDFs are 
normal (Gaussian) and use a linear approximation for IBEs.

• The proposed framework would remove both approximations
• Similar MC methods exist for optimization of TENDL optical model cross sections

– P. Helgesson, H. Sjostrang, A.J. Koning, J. Ryden, D. Rochman, E. Alhassan, S. Pomp, Prog. Nucl. Ener. 96 (2017) 76-98

• MC method for fitting RRR to diff. data alone announced in the AZURE R-mat. Code
• SAMPLER module in SCALE randomly perturbs c.s.’s and geometry of IBEs
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A general form of Bayes theorem

• Model parameters, data, and any model defect treated on the same footing:
– G. Arbanas et al., “Bayesian Optimization of Generalized Data”, CW2017, EPJ-N, 4 (2018) 30, https://doi.org/10.1051/epjn/2018038

• Uses posterior expectation values of constraints relating model, data, and any defect
• Its likelihood function is an exponential function of constraints; prior may be any PDF.

– Sergio Davis, “Exponential Family Models from Bayes’ Theorem under Expectation Constraints” (2016) https://arxiv.org/abs/1503.03451

• Constraints could be imposed selectively on posterior expectation values of
– 1st moment i.e. mean values of 
– 2nd moment i.e. covariances of the above
– Conventional Bayes’ theorems is a special case where both constraints are set to 0 (next slide)

• cf. conventional Bayes’ theorem: posterior exp. values determined by priors & model
• Conventional form of Bayes’ assumes normal PDFs: chi2-minimization

– Demonstrated to be inferior to using MCMC: G.B. King et al. Phys. Rev. Lett. 122, 232502 (2019)
– https://doi.org/10.1103/PhysRevLett.122.232502

2.1 Derivation in generalized data notation

A definition of generalized data vector z is extended to
includemodel defect data d in addition to parametersP and
measured data D, namely:

z≡ ðP ;D; dÞ; ð4Þ

where prior values of generalized data are

⟨z⟩≡ ð⟨P⟩; ⟨D⟩; ⟨d⟩Þ; ð5Þ

and where the prior covariance matrix of generalized data
is represented by a 3# 3 block diagonal matrix C

C≡ ⟨ðz$ ⟨z⟩Þðz$ ⟨z⟩Þ⊺⟩ ð6Þ

≡
M W X
W⊺ V Y
X⊺ Y⊺ D

0

@

1

A; ð7Þ

where square matrices M, V, and D along the diagonal
represent covariance matrix of parameters, measured data,
and the model defect, respectively, whileW,X, and Y are
their respective pair-wise covariances. Prior expectation
value of model defect ⟨d⟩ is a vector of the same size as
measured data ⟨D⟩, and it is expectation value of deviations
between model predictions T(P) and the measured data
caused by the model defect alone. The Bayes’ theorem is
used to write a posterior PDF for z≡ (P, D, d) by making
the following substitution in equation (1),

a ! z
b ! f
g ! ⟨z⟩;C

ð8Þ

to obtain

pðzj⟨z⟩;C; fÞ ∝ pðzj⟨z⟩;CÞ # pðfjz; ⟨z⟩;CÞ ð9Þ

where p(z| ⟨ z ⟩ ,C) is the prior PDF, f is a set of constraints
imposed on the posterior expectation values, and where
p(f|z, ⟨ z ⟩ ,C) is the likelihood function. Constraints in f are
defined by an auxiliary quantity that relates components of
generalized data as

v≡v ðT ð⋅Þ; zÞ≡T ðPÞ $D$ d; ð10Þ

as constraints on their posterior expectation values and
their posterior covariance matrix elements,

〈v 〉 0 ¼ v0
f

V0 ≡ 〈 ðv$ 〈v 〉 0Þðv$ 〈v 〉 0Þ⊺ 〉 0 ¼ V0
f ;

ð11Þ

where v0
f and V0

f are given, and where posterior
expectation values are indicated by primes.

Constraints on posterior expectation values and
covariances yield a likelihood function formally expressed
via Lagrange multipliers, so that the posterior PDF
becomes

pðfjz; 〈 z 〉 ;CÞ ¼ e
$
P

i
livi$

P
ij
Lijðv$ 〈v 〉 0Þiðv$ 〈v 〉 0Þj

ð12Þ

where {li}f and {Lij}f constitute a set of Lagrange
multipliers to be determined from the constraint set f. This
posterior PDF of generalized data implicitly contains a
combined posterior PDF of parameters, measured data,
and model defect data, that has been informed by all prior
information available, namely, by ⟨z⟩, C, and the
constraint f enforced on the posterior expectation values
and covariances.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
g(z) of posterior generalized data z could be computed as an
integral over generalized data

⟨gðzÞ⟩0 ¼
Z

dzgðzÞpðzj⟨z⟩;C; fÞ ð13Þ

that are also used to compute posterior expectation values,
⟨z ⟩ 0, and their posterior covariance matrix C 0. This
posterior PDF yields ⟨v⟩0 ¼ v0

f and V0 ¼ V0
f .

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expectation
values computed with this PDF entails integration over all
generalized data. Therefore, generalized data (model
parameters, measured data, and model defect data) could
be viewed as nuisance parameters marginalized by
integration.

Expectation values of the constraint parameters are
generally set to

v0
f ¼ 0 ð14Þ

and V0
f ¼ 0; ð15Þ

where this choice defines a particular set of constraints
labeled f0. Since the diagonal elements of V0 are the
posterior expectation values of v2

i , and since PDF’s are
positive functions, this constraint could be satisfied by
enforcing v=0 for all values of z inside the integral. This
suggests an effective likelihood function

pðf0jz; ⟨z⟩;CÞ ¼ dDiracðvÞ: ð16Þ

With this likelihood function, the expectation values
computed by the posterior PDF become

⟨gðzÞ⟩0f0 ¼
Z

dzgðzÞpðzj⟨z⟩;CÞdDiracðvÞ; ð17Þ

where p(z| ⟨ z ⟩ , C) is the prior PDF of generalized data.
A dDirac(v) likelihood function of a defective model

effectively reduces integration over z=(P, D, d) to (P,D),
and the model defect variable d is replaced by T(P)$D in
the prior PDF. This component of the prior PDF has
similar features as the likelihood function obtained by
setting constraints v0

f ← ⟨d⟩0 and V0
f ←D0 for a perfect

model. Conversely, non-zero values of v0
f and V0

f for a
perfect model with ⟨d ⟩= ⟨ d ⟩ 0=0 and D ¼ D0 ¼ 0 yield a
PDF analogous to that obtained by setting constraints to
zero and introducing a model defect ⟨d⟩0 ←v0

f and
D0 ←V0

f . This could be phrased as

ðv0
f ;V

0
f ; ð 〈 d 〉 ;DÞ ¼ 0Þ↔ ððv0

f ;V
0
fÞ ¼ 0; 〈 d 〉 0;D0Þ ð18Þ

G. Arbanas et al.: EPJ Nuclear Sci. Technol. 4, 30 (2018) 3

https://doi.org/10.1051/epjn/2018038
https://arxiv.org/abs/1503.03451
https://doi.org/10.1103/PhysRevLett.122.232502
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Linear approx. in the RRR is used is used twice: for Ds and Dkeff

• Ds  from R-matrix resonance parameter cov. matrix in ENDF File 32 (e.g. SAMMY):

• Dkeff from the covariance matrix of cross sections computed above (e.g. TSURFER)

• Both linear approximations need to be accurate to obtain accurate results

Section II.D.1.e, page 6 (R7) Page 104 
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 When the cross section is calculated as a function of the u-parameters, a small increment 
in the calculated cross section is given by 
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in which M is again defined as the covariance matrix for the u-parameters.  In order to print the 
covariance matrix resonance parameters for the p-parameters into the ENDF formats, it is 
necessary to transform the parameter covariance matrix from M to Q.  That transformation is 
made by inserting the formulae 
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into the previous expression, Eq. (II D1 e.28), yielding 
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 For the case in which only one elastic width contains an energy-dependent penetrability, 
the p-parameter covariance matrix must be modified for all elements involving a width having 
energy-dependent penetrability. 
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changes in the nuclear data.  An absolute response sensitivity is defined as an absolute change in response 

due to a relative change in the nuclear data, that is,  

 

 Į
R

S =Į
Į

w
w

� . 

 

In this equation, R represents the response, D�represents the nuclear data, and the tilde will be used to 

represent absolute sensitivity and uncertainty data.  Likewise, a relative response sensitivity is defined as 

a relative change in response due to a relative change in the nuclear data, that is, 

 

 Į
Į 5

S =
R Į
w
w

. 

 

The initial development that follows is for relative, rather than absolute, response sensitivity and 

uncertainty parameters.  It is then shown how to express the quantities in absolute form for reactivity 

analysis and mixed relative-absolute form for combined keff and reactivity analysis.  A summary of the 

notation and definitions used in this section can be found in Appendix A. 

 

The methodology consists of calculating values for a set of I integral responses (keff, reaction rates, etc.), 

some of which have been measured in selected benchmark experiments.  Responses with no measured 

values are the selected “applications,” described previously.  The set of measured response values {mi ; 

i=1,2,…., I} can be arranged into an I-dimension column vector designated as m.  By convention the 

(unknown) experimental values corresponding to applications are represented by the corresponding 

calculated values.  As discussed in Sect. 6.6.2.2, the measured integral responses have uncertainties—

possibly correlated—due to uncertainties in the system parameter specifications.  The I × I covariance 

matrix describing the relative experimental uncertainties is defined to be Cmm.   

 

The calculated integral values for each experiment and application are obtained by neutron transport 

calculations, producing a set of calculated responses {ki; i=1,2,…., I} arranged in a I-dimension vector k.  

The multigroup cross-section data for all nuclide-reaction pairs used in the transport calculations of all 

rHVSRQVHV� cRPSrLVH� a� VHW� ^Įn ; n=1,2,…., M}, where M is the number of unique nuclide-reaction pairs 

multiplied by the number of energy groups.  It is convenient to arrange these data into a M-dimensional 

column vector Į, so that the dependence of the initial calculated responses upon the input nuclear data 

values can be indicated as k = k(Į).  The prior covariance matrix for the nuclear data is equal to the 

M × M matrix ĮĮC , which contains relative variances along the diagonal and relative covariances in the 

off-diagonal positions.  These data describe uncertainties in the infinitely dilute multigroup cross sections.   

 

Nuclear data uncertainties cause uncertainties in the calculated response values.  In general, these 

uncertainties are correlated because the same nuclear data library is used for all the transport calculations.  

The covariance matrix describing uncertainties in the calculated responses due to class-C uncertainties is 

designated as Ckk..  Using expressions for propagation of error (the so-called sandwich rule), the 

following relationship is obtained for the relative uncertainty in the calculated responses: 

 

  T
kk kĮ ĮĮ NĮC S C S ,  (6.6.1) 
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Bayesian MC optimization framework overview 
• Flexible: IBEs or Diff. Data alone could be analyzed independently or simultaneously

KENO sim. IBEs

SAMMY c.s.’s

MC sampler of RRR 
R-matrix param’s.

𝜒" IBE

𝜒"Diff

• MC sample weight takes into account agreement with differential and IBE data
– Initially assuming normal PDFs:

• Large number of R-matrix param’s. requires Metropolis-Hastings MCMC method
– For MC random sampling to arrive at the posterior PDFs of parameters

Compute
weights

IBEs data

Measured c.s.’s

Compute
Posteriors

𝜒" = 𝜒"IBE + 𝜒"Diff𝑤 = exp[−𝜒"/2]
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Application to U-233

• 1000 randomly perturbed resonance parameter sets created by sampling File 32
• For each set calculate keff for U233-SOL-{THERM, INTER}-001-001 (KENO code), 

and then calculate keff mean values and uncertainties, 
– compare to corresponding TSUNAMI-IP’s
– Compare to measured IBE data

• For each set calculate differential cross sections using the SAMMY and then 
calculate mean values and uncertainties (transmission, fission)
– Compare to SAMMY File 32 calculation, assuming it can be done
– Compare to differential data (transmission, total, fission) by K. Guber (ORNL)
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Cross Section Sensitivity of U233-SOL-{THERM, INTER}-001-001
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Uncertainties from MC vs. lin. approx. of ENDF/VIII.0 U-233 File 32
• Linear approximation significantly underestimates uncertainties encoded in File 32
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• à Dkeff (MC) >> Dkeff (linear approx.) 
• MC and linear approx. reach similar 

uncertainty in the RRR for File 32/8
• The effect of large uncertainty on sub-

threshold resonance seen below 1 eV
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MC vs. linear approx.: Dkeff of U233-SOL-INTER-001

• For U233-SOL-INTER-001 consistency between MC and linear approx. is 
achieved after dividing the U-233 ENDF/B-VIII.0 File 32 by 8

• keff uncertainty is decreasing significantly faster than linear scaling would imply

File 32 divided by 4, File 32 divided by 8MC samples from: ENDF/B-VIII.0 File 32,
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MC vs. linear approx. for Dkeff of U233-SOL-INTER-001-001   

• MC reveals large deviation from non-linearity for ENDF/B-VIII.0 U-233 File 32 
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Testing the linear approximation: TSUNAMI-IP vs MC
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MC (non-linear)
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MC total cross section heat map: large variation below 1 eV
• Extremely large thermal cross sections can occur when MC random perturbations of 

subthreshold resonance energy fall near 0 eV
– Due to large uncertainty of subthreshold resonance in the ENDF/B-VIII.0 U233 File 32.
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Transmission measured data vs. MC ensemble
• Agreement above 12 eV is consistent with agreement seen with PUFF on slide 10
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Large variance of MC cross sections below 0.6 eV
• Comparison to Weston capture and fission data:
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Conclusions and outlook

• Basic components of the MC evaluation framework of differential and integral data
– Computation of random MC ensemble from ENDF File 32
– Simulation of IBEs and R-matrix cross section compared to experimental data
– Computation of weighted averages

• Application to U-233 indicates deviation from the conventional linear approximation  
– IBEs: U233-SOL-{INTER,THERM}-001-001
– Diff. data: transmission and fission 

• Evaluation framework will require MCMC method e.g. Metropolis-Hastings (M.-H.)
– Computational burden of IBEs makes this more realistic for differential data evaluation
– Currently surveying parallelized generalizations of the M.-H. method
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Auxiliary slides
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Overview of generalized form of Bayes’ Theorem 
• Generalized data = (parameters, data, model defect):
• Generalized data covariance matrix
• Constraint on the posterior expectation values define the evaluation:

2.1 Derivation in generalized data notation

A definition of generalized data vector z is extended to
includemodel defect data d in addition to parametersP and
measured data D, namely:

z≡ ðP ;D; dÞ; ð4Þ

where prior values of generalized data are

⟨z⟩≡ ð⟨P⟩; ⟨D⟩; ⟨d⟩Þ; ð5Þ

and where the prior covariance matrix of generalized data
is represented by a 3# 3 block diagonal matrix C

C≡ ⟨ðz$ ⟨z⟩Þðz$ ⟨z⟩Þ⊺⟩ ð6Þ

≡
M W X
W⊺ V Y
X⊺ Y⊺ D

0

@

1

A; ð7Þ

where square matrices M, V, and D along the diagonal
represent covariance matrix of parameters, measured data,
and the model defect, respectively, whileW,X, and Y are
their respective pair-wise covariances. Prior expectation
value of model defect ⟨d⟩ is a vector of the same size as
measured data ⟨D⟩, and it is expectation value of deviations
between model predictions T(P) and the measured data
caused by the model defect alone. The Bayes’ theorem is
used to write a posterior PDF for z≡ (P, D, d) by making
the following substitution in equation (1),

a ! z
b ! f
g ! ⟨z⟩;C

ð8Þ

to obtain

pðzj⟨z⟩;C; fÞ ∝ pðzj⟨z⟩;CÞ # pðfjz; ⟨z⟩;CÞ ð9Þ

where p(z| ⟨ z ⟩ ,C) is the prior PDF, f is a set of constraints
imposed on the posterior expectation values, and where
p(f|z, ⟨ z ⟩ ,C) is the likelihood function. Constraints in f are
defined by an auxiliary quantity that relates components of
generalized data as

v≡v ðT ð⋅Þ; zÞ≡T ðPÞ $D$ d; ð10Þ

as constraints on their posterior expectation values and
their posterior covariance matrix elements,

〈v 〉 0 ¼ v0
f

V0 ≡ 〈 ðv$ 〈v 〉 0Þðv$ 〈v 〉 0Þ⊺ 〉 0 ¼ V0
f ;

ð11Þ

where v0
f and V0

f are given, and where posterior
expectation values are indicated by primes.

Constraints on posterior expectation values and
covariances yield a likelihood function formally expressed
via Lagrange multipliers, so that the posterior PDF
becomes

pðfjz; 〈 z 〉 ;CÞ ¼ e
$
P

i
livi$

P
ij
Lijðv$ 〈v 〉 0Þiðv$ 〈v 〉 0Þj

ð12Þ

where {li}f and {Lij}f constitute a set of Lagrange
multipliers to be determined from the constraint set f. This
posterior PDF of generalized data implicitly contains a
combined posterior PDF of parameters, measured data,
and model defect data, that has been informed by all prior
information available, namely, by ⟨z⟩, C, and the
constraint f enforced on the posterior expectation values
and covariances.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
g(z) of posterior generalized data z could be computed as an
integral over generalized data

⟨gðzÞ⟩0 ¼
Z

dzgðzÞpðzj⟨z⟩;C; fÞ ð13Þ

that are also used to compute posterior expectation values,
⟨z ⟩ 0, and their posterior covariance matrix C 0. This
posterior PDF yields ⟨v⟩0 ¼ v0

f and V0 ¼ V0
f .

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expectation
values computed with this PDF entails integration over all
generalized data. Therefore, generalized data (model
parameters, measured data, and model defect data) could
be viewed as nuisance parameters marginalized by
integration.

Expectation values of the constraint parameters are
generally set to

v0
f ¼ 0 ð14Þ

and V0
f ¼ 0; ð15Þ

where this choice defines a particular set of constraints
labeled f0. Since the diagonal elements of V0 are the
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where p(z| ⟨ z ⟩ , C) is the prior PDF of generalized data.
A dDirac(v) likelihood function of a defective model

effectively reduces integration over z=(P, D, d) to (P,D),
and the model defect variable d is replaced by T(P)$D in
the prior PDF. This component of the prior PDF has
similar features as the likelihood function obtained by
setting constraints v0

f ← ⟨d⟩0 and V0
f ←D0 for a perfect

model. Conversely, non-zero values of v0
f and V0

f for a
perfect model with ⟨d ⟩= ⟨ d ⟩ 0=0 and D ¼ D0 ¼ 0 yield a
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zero and introducing a model defect ⟨d⟩0 ←v0

f and
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where square matrices M, V, and D along the diagonal
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and the model defect, respectively, whileW,X, and Y are
their respective pair-wise covariances. Prior expectation
value of model defect ⟨d⟩ is a vector of the same size as
measured data ⟨D⟩, and it is expectation value of deviations
between model predictions T(P) and the measured data
caused by the model defect alone. The Bayes’ theorem is
used to write a posterior PDF for z≡ (P, D, d) by making
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g ! ⟨z⟩;C
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where {li}f and {Lij}f constitute a set of Lagrange
multipliers to be determined from the constraint set f. This
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combined posterior PDF of parameters, measured data,
and model defect data, that has been informed by all prior
information available, namely, by ⟨z⟩, C, and the
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positive functions, this constraint could be satisfied by
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pðf0jz; ⟨z⟩;CÞ ¼ dDiracðvÞ: ð16Þ

With this likelihood function, the expectation values
computed by the posterior PDF become

⟨gðzÞ⟩0f0 ¼
Z

dzgðzÞpðzj⟨z⟩;CÞdDiracðvÞ; ð17Þ

where p(z| ⟨ z ⟩ , C) is the prior PDF of generalized data.
A dDirac(v) likelihood function of a defective model

effectively reduces integration over z=(P, D, d) to (P,D),
and the model defect variable d is replaced by T(P)$D in
the prior PDF. This component of the prior PDF has
similar features as the likelihood function obtained by
setting constraints v0

f ← ⟨d⟩0 and V0
f ←D0 for a perfect

model. Conversely, non-zero values of v0
f and V0

f for a
perfect model with ⟨d ⟩= ⟨ d ⟩ 0=0 and D ¼ D0 ¼ 0 yield a
PDF analogous to that obtained by setting constraints to
zero and introducing a model defect ⟨d⟩0 ←v0

f and
D0 ←V0

f . This could be phrased as

ðv0
f ;V

0
f ; ð 〈 d 〉 ;DÞ ¼ 0Þ↔ ððv0

f ;V
0
fÞ ¼ 0; 〈 d 〉 0;D0Þ ð18Þ

G. Arbanas et al.: EPJ Nuclear Sci. Technol. 4, 30 (2018) 3
2.1 Derivation in generalized data notation

A definition of generalized data vector z is extended to
includemodel defect data d in addition to parametersP and
measured data D, namely:

z≡ ðP ;D; dÞ; ð4Þ

where prior values of generalized data are

⟨z⟩≡ ð⟨P⟩; ⟨D⟩; ⟨d⟩Þ; ð5Þ

and where the prior covariance matrix of generalized data
is represented by a 3# 3 block diagonal matrix C

C≡ ⟨ðz$ ⟨z⟩Þðz$ ⟨z⟩Þ⊺⟩ ð6Þ

≡
M W X
W⊺ V Y
X⊺ Y⊺ D

0

@

1

A; ð7Þ

where square matrices M, V, and D along the diagonal
represent covariance matrix of parameters, measured data,
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between model predictions T(P) and the measured data
caused by the model defect alone. The Bayes’ theorem is
used to write a posterior PDF for z≡ (P, D, d) by making
the following substitution in equation (1),

a ! z
b ! f
g ! ⟨z⟩;C

ð8Þ

to obtain

pðzj⟨z⟩;C; fÞ ∝ pðzj⟨z⟩;CÞ # pðfjz; ⟨z⟩;CÞ ð9Þ

where p(z| ⟨ z ⟩ ,C) is the prior PDF, f is a set of constraints
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where {li}f and {Lij}f constitute a set of Lagrange
multipliers to be determined from the constraint set f. This
posterior PDF of generalized data implicitly contains a
combined posterior PDF of parameters, measured data,
and model defect data, that has been informed by all prior
information available, namely, by ⟨z⟩, C, and the
constraint f enforced on the posterior expectation values
and covariances.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
g(z) of posterior generalized data z could be computed as an
integral over generalized data

⟨gðzÞ⟩0 ¼
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dzgðzÞpðzj⟨z⟩;C; fÞ ð13Þ

that are also used to compute posterior expectation values,
⟨z ⟩ 0, and their posterior covariance matrix C 0. This
posterior PDF yields ⟨v⟩0 ¼ v0

f and V0 ¼ V0
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One consequence of the derivation of the posterior PDF
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Expectation values of the constraint parameters are
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i , and since PDF’s are
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enforcing v=0 for all values of z inside the integral. This
suggests an effective likelihood function

pðf0jz; ⟨z⟩;CÞ ¼ dDiracðvÞ: ð16Þ
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effectively reduces integration over z=(P, D, d) to (P,D),
and the model defect variable d is replaced by T(P)$D in
the prior PDF. This component of the prior PDF has
similar features as the likelihood function obtained by
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where v0
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where {li}f and {Lij}f constitute a set of Lagrange
multipliers to be determined from the constraint set f. This
posterior PDF of generalized data implicitly contains a
combined posterior PDF of parameters, measured data,
and model defect data, that has been informed by all prior
information available, namely, by ⟨z⟩, C, and the
constraint f enforced on the posterior expectation values
and covariances.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
g(z) of posterior generalized data z could be computed as an
integral over generalized data

⟨gðzÞ⟩0 ¼
Z

dzgðzÞpðzj⟨z⟩;C; fÞ ð13Þ

that are also used to compute posterior expectation values,
⟨z ⟩ 0, and their posterior covariance matrix C 0. This
posterior PDF yields ⟨v⟩0 ¼ v0

f and V0 ¼ V0
f .

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expectation
values computed with this PDF entails integration over all
generalized data. Therefore, generalized data (model
parameters, measured data, and model defect data) could
be viewed as nuisance parameters marginalized by
integration.

Expectation values of the constraint parameters are
generally set to

v0
f ¼ 0 ð14Þ

and V0
f ¼ 0; ð15Þ

where this choice defines a particular set of constraints
labeled f0. Since the diagonal elements of V0 are the
posterior expectation values of v2

i , and since PDF’s are
positive functions, this constraint could be satisfied by
enforcing v=0 for all values of z inside the integral. This
suggests an effective likelihood function

pðf0jz; ⟨z⟩;CÞ ¼ dDiracðvÞ: ð16Þ

With this likelihood function, the expectation values
computed by the posterior PDF become
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where p(z| ⟨ z ⟩ , C) is the prior PDF of generalized data.
A dDirac(v) likelihood function of a defective model

effectively reduces integration over z=(P, D, d) to (P,D),
and the model defect variable d is replaced by T(P)$D in
the prior PDF. This component of the prior PDF has
similar features as the likelihood function obtained by
setting constraints v0

f ← ⟨d⟩0 and V0
f ←D0 for a perfect

model. Conversely, non-zero values of v0
f and V0

f for a
perfect model with ⟨d ⟩= ⟨ d ⟩ 0=0 and D ¼ D0 ¼ 0 yield a
PDF analogous to that obtained by setting constraints to
zero and introducing a model defect ⟨d⟩0 ←v0

f and
D0 ←V0

f . This could be phrased as
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2.1 Derivation in generalized data notation
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measured data D, namely:
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and the model defect, respectively, whileW,X, and Y are
their respective pair-wise covariances. Prior expectation
value of model defect ⟨d⟩ is a vector of the same size as
measured data ⟨D⟩, and it is expectation value of deviations
between model predictions T(P) and the measured data
caused by the model defect alone. The Bayes’ theorem is
used to write a posterior PDF for z≡ (P, D, d) by making
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generalized data as

v≡v ðT ð⋅Þ; zÞ≡T ðPÞ $D$ d; ð10Þ

as constraints on their posterior expectation values and
their posterior covariance matrix elements,
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where v0
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f are given, and where posterior
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where {li}f and {Lij}f constitute a set of Lagrange
multipliers to be determined from the constraint set f. This
posterior PDF of generalized data implicitly contains a
combined posterior PDF of parameters, measured data,
and model defect data, that has been informed by all prior
information available, namely, by ⟨z⟩, C, and the
constraint f enforced on the posterior expectation values
and covariances.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
g(z) of posterior generalized data z could be computed as an
integral over generalized data

⟨gðzÞ⟩0 ¼
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that are also used to compute posterior expectation values,
⟨z ⟩ 0, and their posterior covariance matrix C 0. This
posterior PDF yields ⟨v⟩0 ¼ v0

f and V0 ¼ V0
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One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expectation
values computed with this PDF entails integration over all
generalized data. Therefore, generalized data (model
parameters, measured data, and model defect data) could
be viewed as nuisance parameters marginalized by
integration.

Expectation values of the constraint parameters are
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where this choice defines a particular set of constraints
labeled f0. Since the diagonal elements of V0 are the
posterior expectation values of v2

i , and since PDF’s are
positive functions, this constraint could be satisfied by
enforcing v=0 for all values of z inside the integral. This
suggests an effective likelihood function
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With this likelihood function, the expectation values
computed by the posterior PDF become

⟨gðzÞ⟩0f0 ¼
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where p(z| ⟨ z ⟩ , C) is the prior PDF of generalized data.
A dDirac(v) likelihood function of a defective model

effectively reduces integration over z=(P, D, d) to (P,D),
and the model defect variable d is replaced by T(P)$D in
the prior PDF. This component of the prior PDF has
similar features as the likelihood function obtained by
setting constraints v0
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f ←D0 for a perfect
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f for a
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where square matrices M, V, and D along the diagonal
represent covariance matrix of parameters, measured data,
and the model defect, respectively, whileW,X, and Y are
their respective pair-wise covariances. Prior expectation
value of model defect ⟨d⟩ is a vector of the same size as
measured data ⟨D⟩, and it is expectation value of deviations
between model predictions T(P) and the measured data
caused by the model defect alone. The Bayes’ theorem is
used to write a posterior PDF for z≡ (P, D, d) by making
the following substitution in equation (1),

a ! z
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g ! ⟨z⟩;C
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to obtain
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where p(z| ⟨ z ⟩ ,C) is the prior PDF, f is a set of constraints
imposed on the posterior expectation values, and where
p(f|z, ⟨ z ⟩ ,C) is the likelihood function. Constraints in f are
defined by an auxiliary quantity that relates components of
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as constraints on their posterior expectation values and
their posterior covariance matrix elements,
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where v0
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f are given, and where posterior
expectation values are indicated by primes.
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where {li}f and {Lij}f constitute a set of Lagrange
multipliers to be determined from the constraint set f. This
posterior PDF of generalized data implicitly contains a
combined posterior PDF of parameters, measured data,
and model defect data, that has been informed by all prior
information available, namely, by ⟨z⟩, C, and the
constraint f enforced on the posterior expectation values
and covariances.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
g(z) of posterior generalized data z could be computed as an
integral over generalized data

⟨gðzÞ⟩0 ¼
Z

dzgðzÞpðzj⟨z⟩;C; fÞ ð13Þ

that are also used to compute posterior expectation values,
⟨z ⟩ 0, and their posterior covariance matrix C 0. This
posterior PDF yields ⟨v⟩0 ¼ v0

f and V0 ¼ V0
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One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expectation
values computed with this PDF entails integration over all
generalized data. Therefore, generalized data (model
parameters, measured data, and model defect data) could
be viewed as nuisance parameters marginalized by
integration.

Expectation values of the constraint parameters are
generally set to
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f ¼ 0 ð14Þ

and V0
f ¼ 0; ð15Þ

where this choice defines a particular set of constraints
labeled f0. Since the diagonal elements of V0 are the
posterior expectation values of v2

i , and since PDF’s are
positive functions, this constraint could be satisfied by
enforcing v=0 for all values of z inside the integral. This
suggests an effective likelihood function

pðf0jz; ⟨z⟩;CÞ ¼ dDiracðvÞ: ð16Þ

With this likelihood function, the expectation values
computed by the posterior PDF become

⟨gðzÞ⟩0f0 ¼
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where p(z| ⟨ z ⟩ , C) is the prior PDF of generalized data.
A dDirac(v) likelihood function of a defective model

effectively reduces integration over z=(P, D, d) to (P,D),
and the model defect variable d is replaced by T(P)$D in
the prior PDF. This component of the prior PDF has
similar features as the likelihood function obtained by
setting constraints v0
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where square matrices M, V, and D along the diagonal
represent covariance matrix of parameters, measured data,
and the model defect, respectively, whileW,X, and Y are
their respective pair-wise covariances. Prior expectation
value of model defect ⟨d⟩ is a vector of the same size as
measured data ⟨D⟩, and it is expectation value of deviations
between model predictions T(P) and the measured data
caused by the model defect alone. The Bayes’ theorem is
used to write a posterior PDF for z≡ (P, D, d) by making
the following substitution in equation (1),

a ! z
b ! f
g ! ⟨z⟩;C
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to obtain
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where p(z| ⟨ z ⟩ ,C) is the prior PDF, f is a set of constraints
imposed on the posterior expectation values, and where
p(f|z, ⟨ z ⟩ ,C) is the likelihood function. Constraints in f are
defined by an auxiliary quantity that relates components of
generalized data as
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as constraints on their posterior expectation values and
their posterior covariance matrix elements,
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where v0
f and V0

f are given, and where posterior
expectation values are indicated by primes.

Constraints on posterior expectation values and
covariances yield a likelihood function formally expressed
via Lagrange multipliers, so that the posterior PDF
becomes
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where {li}f and {Lij}f constitute a set of Lagrange
multipliers to be determined from the constraint set f. This
posterior PDF of generalized data implicitly contains a
combined posterior PDF of parameters, measured data,
and model defect data, that has been informed by all prior
information available, namely, by ⟨z⟩, C, and the
constraint f enforced on the posterior expectation values
and covariances.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
g(z) of posterior generalized data z could be computed as an
integral over generalized data

⟨gðzÞ⟩0 ¼
Z

dzgðzÞpðzj⟨z⟩;C; fÞ ð13Þ

that are also used to compute posterior expectation values,
⟨z ⟩ 0, and their posterior covariance matrix C 0. This
posterior PDF yields ⟨v⟩0 ¼ v0

f and V0 ¼ V0
f .

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expectation
values computed with this PDF entails integration over all
generalized data. Therefore, generalized data (model
parameters, measured data, and model defect data) could
be viewed as nuisance parameters marginalized by
integration.

Expectation values of the constraint parameters are
generally set to
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and V0
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where this choice defines a particular set of constraints
labeled f0. Since the diagonal elements of V0 are the
posterior expectation values of v2

i , and since PDF’s are
positive functions, this constraint could be satisfied by
enforcing v=0 for all values of z inside the integral. This
suggests an effective likelihood function

pðf0jz; ⟨z⟩;CÞ ¼ dDiracðvÞ: ð16Þ

With this likelihood function, the expectation values
computed by the posterior PDF become

⟨gðzÞ⟩0f0 ¼
Z

dzgðzÞpðzj⟨z⟩;CÞdDiracðvÞ; ð17Þ

where p(z| ⟨ z ⟩ , C) is the prior PDF of generalized data.
A dDirac(v) likelihood function of a defective model

effectively reduces integration over z=(P, D, d) to (P,D),
and the model defect variable d is replaced by T(P)$D in
the prior PDF. This component of the prior PDF has
similar features as the likelihood function obtained by
setting constraints v0

f ← ⟨d⟩0 and V0
f ←D0 for a perfect

model. Conversely, non-zero values of v0
f and V0

f for a
perfect model with ⟨d ⟩= ⟨ d ⟩ 0=0 and D ¼ D0 ¼ 0 yield a
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where square matrices M, V, and D along the diagonal
represent covariance matrix of parameters, measured data,
and the model defect, respectively, whileW,X, and Y are
their respective pair-wise covariances. Prior expectation
value of model defect ⟨d⟩ is a vector of the same size as
measured data ⟨D⟩, and it is expectation value of deviations
between model predictions T(P) and the measured data
caused by the model defect alone. The Bayes’ theorem is
used to write a posterior PDF for z≡ (P, D, d) by making
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to obtain
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where p(z| ⟨ z ⟩ ,C) is the prior PDF, f is a set of constraints
imposed on the posterior expectation values, and where
p(f|z, ⟨ z ⟩ ,C) is the likelihood function. Constraints in f are
defined by an auxiliary quantity that relates components of
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where v0
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f are given, and where posterior
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where {li}f and {Lij}f constitute a set of Lagrange
multipliers to be determined from the constraint set f. This
posterior PDF of generalized data implicitly contains a
combined posterior PDF of parameters, measured data,
and model defect data, that has been informed by all prior
information available, namely, by ⟨z⟩, C, and the
constraint f enforced on the posterior expectation values
and covariances.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
g(z) of posterior generalized data z could be computed as an
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⟨gðzÞ⟩0 ¼
Z

dzgðzÞpðzj⟨z⟩;C; fÞ ð13Þ

that are also used to compute posterior expectation values,
⟨z ⟩ 0, and their posterior covariance matrix C 0. This
posterior PDF yields ⟨v⟩0 ¼ v0

f and V0 ¼ V0
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One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expectation
values computed with this PDF entails integration over all
generalized data. Therefore, generalized data (model
parameters, measured data, and model defect data) could
be viewed as nuisance parameters marginalized by
integration.

Expectation values of the constraint parameters are
generally set to
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where this choice defines a particular set of constraints
labeled f0. Since the diagonal elements of V0 are the
posterior expectation values of v2

i , and since PDF’s are
positive functions, this constraint could be satisfied by
enforcing v=0 for all values of z inside the integral. This
suggests an effective likelihood function
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With this likelihood function, the expectation values
computed by the posterior PDF become
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where p(z| ⟨ z ⟩ , C) is the prior PDF of generalized data.
A dDirac(v) likelihood function of a defective model

effectively reduces integration over z=(P, D, d) to (P,D),
and the model defect variable d is replaced by T(P)$D in
the prior PDF. This component of the prior PDF has
similar features as the likelihood function obtained by
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