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Presentation Outline

Extant methods (linear approximation)

Bayes theorem for generalized data

Schematic diagram

Framework Demonstration on U-233 integral and differential data
— Comparison to linear approximation

o Summary and outlook
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Summary of conventional evaluation of diff. and infegral data:

Extant R-matrix resolved resonance range (RRR) evaluations assume normal
probability density functions (PDFs) and use Newton-Raphson method to minimize
chi? of R-matrix and differential data only.

R-matrix parameters are subsequently further optimized to improve the fit of neutron
transport simulations of integral benchmark experiments (IBEs), by a generalized
linear least squares (GLLS) of the SAMINT module of SAMMY.

The 2 methods above are based on Bayes theorem but assume all PDFs are
normal (Gaussian) and use a linear approximation for IBEs.

The proposed framework would remove both approximations

Similar MC methods exist for optimization of TENDL optical model cross sections
— P. Helgesson, H. Sjostrang, A.J. Koning, J. Ryden, D. Rochman, E. Alhassan, S. Pomp, Prog. Nucl. Ener. 96 (2017) 76-98

MC method for fitting RRR to diff. data alone announced in the AZURE R-mat. Code
SAMPLER module in SCALE randomly perturbs c.s.’s and geometry of IBEs

%OAK RIDGE

National Laboratory



A general form of Bayes theorem

Model parameters, data, and any model defect treated on the same footing:
— G. Arbanas et al., “Bayesian Optimization of Generalized Data”, CW2017, EPJ-N, 4 (2018) 30, https://doi.org/10.1051/epjn/2018038

Uses posterior expectation values of constraints relating model, data, and any defect

Its likelihood function is an exponential function of constraints; prior may be any PDF.

— Sergio Davis, “Exponential Family Models from Bayes’ Theorem under Expectation Constraints” (2016) https://arxiv.org/abs/1503.03451

Constraints could be imposed selectively on posterior expectation values of
— 1*momenti.e. mean values of T(P)—D —§

— 2"d moment i.e. covariances of the above
— Conventional Bayes’ theorems is a special case where both constraints are set to 0 (next slide)

cf. conventional Bayes’ theorem: posterior exp. values determined by priors & model

Conventional form of Bayes’ assumes normal PDFs: chi?-minimization

— Demonstrated to be inferior to using MCMC: G.B. King et al. Phys. Rev. Lett. 122, 232502 (2019)

— https://doi.org/10.1103/PhysRevlett.122.232502
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Linear approx. in the RRR is used is used twice: for Acand Ak

* Ao from R-matrix resonance parameter cov. matrix in ENDF File 32 (e.g. SAMMY):

<5c7i50j> = 00, M, iid

m OU,

o Ak« from the covariance matrix of cross sections computed above (e.g. TSURFER)

C, =S,C,S" _a R

ko oo

* Both linear approximations need to be accurate to obtain accurate results
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Bayesian MC optimization framework overview

* Flexible: IBEs or Diff. Data alone could be analyzed independently or simultaneously

KENO sim. IBEs IBEs data

2
X IBE

Compu’re Compute
weights Posteriors

XZDiff
Measured c.s.’s

« MC sample weight takes into account agreement with differential and IBE data
— Initially assuming normal PDFs:

MC sampler of RRR
R-maftrix param’s.

SAMMY c.s.'s

w = exp[— x?/2] X% = x%e + X’Ditt

e Large number of R-matrix param’s. requires Metropolis-Hastings MCMC method

— For MC random sampling to arrive at the posterior PDFs of parameters
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Application to U-233

* 1000 randomly perturbed resonance parameter sets created by sampling File 32

e For each set calculate k_« for U233-SOL-{THERM, INTER}-001-001 (KENO code),
and then calculate k.« mean values and uncertainties,

— compare to corresponding TSUNAMI-IP’s
— Compare to measured IBE data

e For each set calculate differential cross sections using the SAMMY and then
calculate mean values and uncertainties (transmission, fission)

— Compare to SAMMY File 32 calculation, assuming it can be done
— Compare to differential data (transmission, total, fission) by K. Guber (ORNL)
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ross Section Sensitivity of U233-SOL-{THERM, INTER}-001-001

Sensitivity Plot Sensitivity Plot
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Uncertainties from MC vs. lin. approx. of ENDF/VIII.O U-233 File 32

» Linear approximation significantly underestimates uncertainties encoded in File 32

MC vs linear: ENDF/B-VIIL.0 U-233 File32 ,, ENDF/B-VIIL.O File 32 divided by 4
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« MC and linear approx. reach similar 05
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e The effect of large uncertainty on sub- o2 e _\—u_IL
threshold resonance seen below 1 eV
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MC vs. linear approx.: Ak ¢ of U233-SOL-INTER-001

 For U233-SOL-INTER-001 consistency between MC and linear approx. is
achieved after dividing the U-233 ENDF/B-VIII.0 File 32 by 8

MC samples from: ENDF/B-VIII.O File 32, File 32 divided by 4, File 32 divided by 8
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* k. uncertainty is decreasing significantly faster than linear scaling would imply
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MC vs. linear approx. for Ak ¢ of U233-SOL-INTER-001-001

 MC reveals large deviation from non-linearity for ENDF/B-VIII.0 U-233 File 32

Testingthe linearapproximation: TSUNAMI-IP vs MIC
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MC total cross section heat map: large variation below 1 eV

e Extremely large thermal cross sections can occur when MC random perturbations of
subthreshold resonance energy fall near 0 eV

— Due to large uncertainty of subthreshold resonance in the ENDF/B-VIII.0 U233 File 32.
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Transmission measured data vs. MC ensemble
 Agreement above 12 eV is consistent with agreement seen with PUFF on slide 10

MC transmission mean value +- std. dev. vs. measured data
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Large variance of MC cross sections below 0.6 eV

e Comparison to Weston capture and fission data:

MC capture mean value +- std. dev. vs. measured data MC fission mean value +- std. dev. vs. measured data
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Conclusions and outlook

« Basic components of the MC evaluation framework of differential and integral data
— Computation of random MC ensemble from ENDF File 32

— Simulation of IBEs and R-matrix cross section compared to experimental data
— Computation of weighted averages

» Application to U-233 indicates deviation from the conventional linear approximation
— IBEs: U233-SOL-{INTER,THERM}-001-001
— Diff. data: transmission and fission

e Evaluation framework will require MCMC method e.g. Metropolis-Hastings (M.-H.)

— Computational burden of IBEs makes this more realistic for differential data evaluation
— Currently surveying parallelized generalizations of the M.-H. method
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Auxiliary slides
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Overview of generalized form of Bayes' Theorem

 Generalized data = (parameters, data, model defect): 2= (P, D,$)

 Generalized data covariance matrix C=((z = (2))(z—(N)")

e Constraint on the posterior expectation values define the evaluation:

B (w)' =dy
w=T(P)—D-5§ Q= ((0— (0))w— ())) =Q,

Posterior PDF; model T(P) appears only in the the likelihood function via constraints:
p(2[{(2), C, f) xp(2|{(z), C) x p(fz,(2),C)
* Exponential likelihood function
p(flz, (2),C) = e—ziliwz’—zm/‘z‘j(w—<w>')i(w—<w>’)j
- Extant evaluations impose constraints o'y =0 Q'; =0 leading to:

% OAK RIDGE p(folz, (2), C) = Spirac(®)




