Status of astrophysical abundances and rates calculation using ENDF/B libraries

Boris Pritychenko¹

1 National Nuclear Data Center, Brookhaven National

Laboratory, Upton, NY 11973-5000, USA

National Nuclear Data Center

- The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic nuclear research and for applied nuclear technologies. The NNDC is a worldwide resource for nuclear data.
- Major Databases
 - ENDF: Evaluated Nuclear (reaction) Data File
 - EXFOR: Experimental Nuclear Reaction Data
 - ENSDF: Evaluated Nuclear Structure Data File
 - XUNDL: eXperimental Unevaluated Nuclear Data List
 - NSR: Nuclear Science References
- Web Services: www.nndc.bnl.gov
- Nuclear model development and research projects

Recent Re-analysis of KADoNiS Library

- KADoNiS (Karlsruhe Astrophysical Database of Nucleosynthesis in Stars) has been extensively used in stellar nucleosynthesis calculations, and its cross sections are normalized (biased) to a ¹⁹⁷Au(n,γ) activation measurement of W. Ratynski, F. Kaeppeler, Phys. Rev. C 37, 595 (1988).
- The activation Maxwellian-averaged cross section (MACS) 30 keV value of 582±9 mb disagrees with the International Evaluation of Neutron Cross Section Standards value of 620±11 mb.
- The standards are extensively used in ENDF/B-VIII.0 library.
- Re-analysis of gold neutron capture cross sections by R. Reifarth et al. showed an impact of neutron backing material scattering; ENDF libraries are essentially based on the TOF-measurements and not affected by this issue.
- The revised ¹⁹⁷Au(n,γ) activation MACS value of 612±6 mb is consistent with the ENDF value, and the KADoNiS cross sections have been updated for 63 target nuclides from ¹⁰³Rh to ¹⁹⁷Au.
- Only corrected cross section plots are available publicly while we need data for GW170817 modeling.

ew stellar enhancement factors are available (T. Rauscher, priv. com.), and the MACS30 obtained om the evaluated data libraries ENDFB7, JEFF3.1 and JENDL3.3 are now also included. More formation in the logbook.

Recent Re-analysis of KADoNiS Library

- KADoNiS (Karlsruhe Astrophysical Database of Nucleosynthesis in Stars) has been extensively used in stellar nucleosynthesis calculations, and its cross sections are normalized (biased) to a ¹⁹⁷Au(n,γ) activation measurement of W. Ratynski, F. Kaeppeler, Phys. Rev. C 37, 595 (1988).
- The activation Maxwellian-averaged cross section (MACS) 30 keV value of 582±9 mb disagrees with the International Evaluation of Neutron Cross Section Standards value of 620±11 mb.
- The standards are extensively used in ENDF/B-VIII.0 library.
- Re-analysis of gold neutron capture cross sections by R. Reifarth et al. showed an impact of neutron backing material scattering; ENDF libraries are essentially based on the TOF-measurements and not affected by this issue.
- The revised ¹⁹⁷Au(n,γ) activation MACS value of 612±6 mb is consistent with the ENDF value, and the KADoNiS cross sections have been updated for 63 target nuclides from ¹⁰³Rh to ¹⁹⁷Au.
- Only corrected cross section plots are available publicly while we need data for GW170817 modeling.

Recent Re-analysis of KADoNiS Library

- KADoNiS (Karlsruhe Astrophysical Database of Nucleosynthesis in Stars) has been extensively used in stellar nucleosynthesis calculations, and its cross sections are normalized (biased) to a ¹⁹⁷Au(n,γ) activation measurement of W. Ratynski, F. Kaeppeler, Phys. Rev. C 37, 595 (1988).
- The activation Maxwellian-averaged cross section (MACS) 30 keV value of 582±9 mb disagrees with the International Evaluation of Neutron Cross Section Standards value of 620±11 mb.
- The standards are extensively used in ENDF/B-VIII.0 library.
- Re-analysis of gold neutron capture cross sections by R. Reifarth et al. showed an impact of neutron backing material scattering; ENDF libraries are essentially based on the TOF-measurements and not affected by this issue.
- The revised ¹⁹⁷Au(n,γ) activation MACS value of 612±6 mb is consistent with the ENDF value, and the KADoNiS cross sections have been updated for 63 target nuclides from ¹⁰³Rh to ¹⁹⁷Au.
- Only corrected cross section plots are available publicly while we need data for GW170817 modeling.
 ENERGY

Eur. Phys. J. Plus (2018) 133 : 424 DOI 10.1140/epjp/2018-12295-3	The European Physical Journal Plus
Review	
Neutron-induced cross sections*	
From raw data to astrophysical rates	
René Reifarth ^{1,a} , Philipp Erbacher ¹ , Stefan Fiebiger ¹ , Kathrin G Franz Käppeler ³ , Nadine Klapper ¹ , Deniz Kurtulgil ¹ , Christoph Alberto Mengoni ^{5,6} , Benedikt Thomas ¹ , Stefan Schmidt ⁷ , Mario W	öbel ¹ , Tanja Heftrich ¹ , Michael Heil ² , Langer ¹ , Claudia Lederer-Woods ⁴ , /eigand ¹ , and Michael Wiescher ⁸
 Goethe University Frankfurt am Main, Frankfurt, Germany GSI Holmholtzzentrum für Schwerionenforschung, Darmstadt, German Karlsruhe Institute of Technology, Karlsruhe, Germany School of Physics and Astronomy, University of Edinburgh, Edinburgh ENEA, Bologna, Italy INFN, Sezione di Bologna, Bologna, Italy Frankfurt Institute for Advanced Studies, Frankfurt, Germany University of Notre Dame, Notre Dame, IN, USA 	y , UK
$(\mathbf{fi}_{10})^{5} = (\mathbf{f}_{10})^{5} = (\mathbf{f}_{10$	New recommandation Kadonis 0.3, (Bao 2000) 0 80 100 120 keV) 71] recommendation for the <i>MACS</i> of ¹⁹⁷ Au.
(qu) (c) u) (c) u) (c) u) (c) u) (c) u)	New recommandation Kadomis 0.3, (Bao 2000)

ENDF/B (Evaluated Nuclear Data File) Library

- In the light of the previous disclosure, it is absolutely essential to develop fully traceable, documented and unbiased nuclear data sets for stellar nucleosynthesis calculations.
- ENDF/B is a primary nuclear reaction data library for applications, and it is focused on target nuclei near the valley of stability.
- The ENDF/B library was originally produced by the Cross Section Evaluation Working Group (CSEWG) collaboration in 1968 for nuclear power plant design, criticality safety, shielding, and national security applications.
- It gained a worldwide popularity, many nations forged their own evaluated nuclear data libraries using the ENDF-6 format, and its user community has broadened into applied and fundamental sciences since introduction of evaluated neutron cross sections in MCNP, and GEANT computer codes simulations.
- The recently released ENDF/B-VIII.0 library by the CSEWG collaboration represents the state of the art in nuclear reaction data evaluations.

ENDF/B (Evaluated Nuclear Data File) Library

- In the light of the previous disclosure, it is absolutely essential to develop fully traceable, documented and unbiased nuclear data sets for stellar nucleosynthesis calculations.
- ENDF/B is a primary nuclear reaction data library for applications, and it is focused on target nuclei near the valley of stability.
- The ENDF/B library was originally produced by the Cross Section Evaluation Working Group (CSEWG) collaboration in 1968 for nuclear power plant design, criticality safety, shielding, and national security applications.
- It gained a worldwide popularity, many nations forged their own evaluated nuclear data libraries using the ENDF-6 format, and its user community has broadened into applied and fundamental sciences since introduction of evaluated neutron cross sections in MCNP, and GEANT computer codes simulations.
- The recently released ENDF/B-VIII.0 library by the CSEWG collaboration represents the state of the art in nuclear reaction data evaluations.

- ENDF neutron targets list matches well with an s-process path.
- Slow neutron capture Maxwellian-averaged cross sections (MACS) can be expressed as

$$\sigma^{Maxw}(kT) = \frac{2}{\sqrt{\pi}} \frac{(m_1/(m_1 + m_2))^2}{(kT)^2} \int_0^\infty \sigma(E_n^L) E_n^L \exp(-\frac{aE_n^L}{kT}) dE_n^L$$

where *k* and *T* are the Boltzmann constant and temperature of the system, respectively, and E is an energy of relative motion of the neutron with respect to the target. Here E_n^L is a neutron energy in the laboratory system and m_1 and m_2 are masses of a neutron and target nucleus.

 Calculation of MACS and astrophysical reaction rates by Doppler broadening cross sections and numerical integration.

- ENDF neutron targets list matches well with an s-process path.
- Slow neutron capture Maxwellian-averaged cross sections (MACS) can be expressed as

$$\sigma^{Maxw}(kT) = \frac{2}{\sqrt{\pi}} \frac{\left(\frac{m_1}{(m_1 + m_2)}\right)^2}{(kT)^2} \int_0^\infty \sigma(E_n^L) E_n^L \exp(-\frac{aE_n^L}{kT}) dE_n^L$$

where *k* and *T* are the Boltzmann constant and temperature of the system, respectively, and E is an energy of relative motion of the neutron with respect to the target. Here E_n^L is a neutron energy in the laboratory system and m_1 and m_2 are masses of a neutron and target nucleus.

 Calculation of MACS and astrophysical reaction rates by Doppler broadening cross sections and numerical integration.

Calculations of Maxwellian-averaged cross sections and astrophysical reaction rates using the ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, and ENDF/B-VI.8 evaluated nuclear reaction data libraries

```
B. Pritychenko <sup>A</sup>⊠, S.F. Mughaghab, A.A. Sonzogni
```

Show more

https://doi.org/10.1016/j.adt.2010.05.002

Abstract

We have calculated the Maxwellian-averaged cross sections and astrophysical reaction rates of the stellar nucleosynthesis reactions (n, γ), (n, fission), (n, p), (n, α), and (n, 2n) using the ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, and ENDF/B-VI.8 evaluated nuclear reaction data libraries. These four major nuclear reaction libraries were processed under the same conditions for Maxwellian temperatures (*kT*) ranging from 1 keV to 1 MeV. We compare our current calculations of the *s*-process nucleosynthesis nuclei with previous data sets and discuss the differences between them and the implications for nuclear astrophysics.

- ENDF neutron targets list matches well with an s-process path.
- Slow neutron capture Maxwellian-averaged cross sections (MACS) can be expressed as

$$\sigma^{Maxw}(kT) = \frac{2}{\sqrt{\pi}} \frac{\left(\frac{m_1}{(m_1 + m_2)}\right)^2}{(kT)^2} \int_0^\infty \sigma(E_n^L) E_n^L \exp(-\frac{aE_n^L}{kT}) dE_n^L$$

where *k* and *T* are the Boltzmann constant and temperature of the system, respectively, and E is an energy of relative motion of the neutron with respect to the target. Here E_n^L is a neutron energy in the laboratory system and m_1 and m_2 are masses of a neutron and target nucleus.

 Calculation of MACS and astrophysical reaction rates by Doppler broadening cross sections and numerical integration.

Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

B. Pritychenko ^a A ⊠, S.F. Mughabghab ^a **B Show more** https://doi.org/10.1016/j.nds.2012.11.007

Get rights and content

Abstract

We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce *s*-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

- ENDF neutron targets list matches well with an s-process path.
- Slow neutron capture Maxwellian-averaged cross sections (MACS) can be expressed as

$$\sigma^{Maxw}(kT) = \frac{2}{\sqrt{\pi}} \frac{\left(\frac{m_1}{(m_1 + m_2)}\right)^2}{(kT)^2} \int_0^\infty \sigma(E_n^L) E_n^L \exp(-\frac{aE_n^L}{kT}) dE_n^L$$

where *k* and *T* are the Boltzmann constant and temperature of the system, respectively, and E is an energy of relative motion of the neutron with respect to the target. Here E_n^L is a neutron energy in the laboratory system and m_1 and m_2 are masses of a neutron and target nucleus.

 Calculation of MACS and astrophysical reaction rates by Doppler broadening cross sections and numerical integration.

ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data

D.A. Brown ^a, M.B. Chadwick ^b A ^{BA}, R. Capote ^c, A.C. Kahler ^b, A. Trkov ^c, M.W. Herman ^a, A.A. Sonzogni ^a, Y. Danon ^d, A.D. Carlson ^e, M. Dunn ^f, D.L. Smith ^g, G.M. Hale ^b, G. Arbanas ^h, R. Arcilla ^a, C.R. Bates ^b, B. Beck ⁱ, B. Becker ^j, F. Brown ^b, R.J. Casperson ⁱ, J. Conlin ^b, D.E. Cullen ⁱ, M.-A. Descalle ⁱ, R. Firestone ^k, T. Gaines ¹, K.H. Guber ^h, A.I. Hawari ^m, J. Holmes ⁿ, T.D. Johnson ^a, T. Kawano ^b, B.C. Kiedrowski ^o, A.J. Koning ^c, S. Kopecky ^p, L. Leal ^q, J.P. Lestone ^b, C. Lubitz ^r, J.I. Márquez Damián ^s, C.M. Mattoon ⁱ, E.A. McCutchan ^a, S. Mughabghab ^a, P. Navratil ^t, D. Neudecker ^b, G.P.A. Nobre ^a, G. Noguere ^u, M. Paris ^b, M.T. Pigni ^h, A.J. Plompen ^p, B. Pritychenko ^a, V.G. Pronyaev ^v, D. Roubtsov ^w, D. Rochman ^x, P. Romano ^g, P. Schillebeeckx ^p, S. Simakov ^y, M. Sin ^z, I. Sirakov ^{aa}, B. Sleaford ⁱ, V. Sobes ^h, E.S. Soukhovitskii ^{ab}, I. Stetcu ^b, P. Talou ^b, I. Thompson ⁱ, S. van der Marck ^{ac}, L. Welser-Sherrill ^b, D. Wiarda ^h, M. White ^b, J.L. Wormald ^m, R.Q. Wright ^h, M. Zerkle ⁿ, G. Žerovnik ^p, Y. Zhu ^m

ENDF Validation: s-process Modeling

- The s-process abundance of an isotope $N_{(A)}$ depends on its precursor $N_{(A-1)}$ quantity as

$$\frac{dN_{(A)}}{dt} = \sigma_{(A-1)}N_{(A-1)} + \sigma_{(A)}N_{(A)}$$

• This equation was analytically solved (classical model)

$$\sigma_{(A)}N_{(A)} = \frac{fN_{56}}{\tau_0} \prod_{i=56}^{A} \left[1 + \frac{1}{\sigma(i)\tau_0}\right]^{-1}$$

- Select *s*-process only nuclides along the process path and fit MACS abundance product values using least squares.
- Use fitting parameters to calculate *s*-process contributions and compare with the presently-observed product values.
- The observed surplus is commonly attributed to an *r*-process (rapid neutron capture) contribution.

TABLE I: s-process strong component neutron fluence parameters for ENDF/B-VIII.0 and TENDL-2015 libraries [15, 16].

Parameters	ENDF/B-VIII.0	TENDL-2015
f	0.00434 ± 0.00123	0.00355 ± 0.00059
$ au_0$	0.31256 ± 0.02947	0.37488 ± 0.03013

ENDF Validation: s-process Modeling

- The s-process abundance of an isotope $N_{(A)}$ depends on its precursor $N_{(A-1)}$ quantity as

$$\frac{dN_{(A)}}{dt} = \sigma_{(A-1)}N_{(A-1)} + \sigma_{(A)}N_{(A)}$$

• This equation was analytically solved (classical model)

$$\sigma_{(A)}N_{(A)} = \frac{fN_{56}}{\tau_0} \prod_{i=56}^{A} \left[1 + \frac{1}{\sigma(i)\tau_0}\right]^{-1}$$

- Select *s*-process only nuclides along the process path and fit MACS abundance product values using least squares.
- Use fitting parameters to calculate *s*-process contributions and compare with the presently-observed product values.
- The observed surplus is commonly attributed to an *r*-process (rapid neutron capture) contribution.

ENDF Validation: s-process Modeling

- The s-process abundance of an isotope $N_{(A)}$ depends on its precursor $N_{(A-1)}$ quantity as

$$\frac{dN_{(A)}}{dt} = \sigma_{(A-1)}N_{(A-1)} + \sigma_{(A)}N_{(A)}$$

• This equation was analytically solved (classical model)

$$\sigma_{(A)}N_{(A)} = \frac{fN_{56}}{\tau_0} \prod_{i=56}^{A} \left[1 + \frac{1}{\sigma(i)\tau_0}\right]^{-1}$$

- Select *s*-process only nuclides along the process path and fit MACS abundance product values using least squares.
- Use fitting parameters to calculate *s*-process contributions and compare with the presently-observed product values.
- The observed surplus is commonly attributed to an *r*-process (rapid neutron capture) contribution.

Analysis of *r*-process Abundances

- *M. Arnould et al., Phys. Rep. 450, 97 (2007)* is based on H. Palme, H. Beer, Abundances of the Elements in the Solar System, in Landolt Bornstein, New Series, Group VI, Astron. & Astrophys., Vol. 3, Subvol. a, (Berlin: Springer), p. 196 (1993).
- ENDF/B-VIII.0 *r*-process abundances agree well with M. Arnould et al. except (N=82): ¹³⁸Ba and ¹⁴⁰Ce (n,γ).
- s-process overproduction in ¹³⁸Ba was observed by Palme & Beer, its abundance was interpreted by Arnould et al. as 0.214^{+0.786}_{-0.214} (Si=10⁶), ¹⁴⁰Ce (n,γ) cross sections will be further investigated in the next release of ENDF/B library.
- ENDF library clearly contains high quality data and can be used in astrophysical modeling.
- Classic model precision for non-branching heavy nuclei ~3%, and it is reliable for heavy nuclei.

REACLIB: Astrophysical Reaction Rates

- Next, calculate ENDF/B-VIII.0 & TENDL-2015 reaction rates for (n,γ), (n,F), (n,p) and (n,α) within 0.01-10 GK range, fit the data into REACLIB data format. Start testing with codes like MESA....
- KADoNiS has rates for kT=1-100 keV based on (n,γ) kT=30 keV cross sections.
- The complementary theoretical calculations of T. Rauscher, F.K. Thielemann extend the range to 0.1-10 GK (*kT* =8-800 keV) using the statistical model NON-SMOKER code derived from the SMOKER.
- S-process range of *kT*=8-90 keV.
- No SEF correction in rates.

$$R(T_9) = exp(a_0 + a_1T_9^{-1} + a_2T_9^{-1/3} + a_3T_9^{1/3} + a_4T_9 + a_5T_9^{5/3} + a_6lnT_9),$$

REACLIB: Astrophysical Reaction Rates

- Next, calculate ENDF/B-VIII.0 & TENDL-2015 reaction rates for (n,γ), (n,F), (n,p) and (n,α) within 0.01-10 GK range, fit the data into REACLIB data format. Start testing with codes like MESA....
- KADoNiS has rates for kT=1-100 keV based on (n,γ) kT=30 keV cross sections.
- The complementary theoretical calculations of T. Rauscher, F.K. Thielemann extend the range to 0.1-10 GK (*kT* =8-800 keV) using the statistical model NON-SMOKER code derived from the SMOKER.
- S-process range of *kT*=8-90 keV.
- No SEF correction in rates.

$$R(T_9) = exp(a_0 + a_1T_9^{-1} + a_2T_9^{-1/3} + a_3T_9^{1/3} + a_4T_9 + a_5T_9^{5/3} + a_6lnT_9),$$

REACLIB: Astrophysical Reaction Rates

- Next, calculate ENDF/B-VIII.0 & TENDL-2015 reaction rates for (n,γ), (n,F), (n,p) and (n,α) within 0.01-10 GK range, fit the data into REACLIB data format. Start testing with codes like MESA....
- KADoNiS has rates for kT=1-100 keV based on (n,γ) kT=30 keV cross sections.
- The complementary theoretical calculations of T. Rauscher, F.K. Thielemann extend the range to 0.1-10 GK (*kT* =8-800 keV) using the statistical model NON-SMOKER code derived from the SMOKER.
- S-process range of *kT*=8-90 keV.
- No SEF correction in rates.

$$R(T_9) = exp(a_0 + a_1T_9^{-1} + a_2T_9^{-1/3} + a_3T_9^{1/3} + a_4T_9 + a_5T_9^{5/3} + a_6lnT_9),$$

Takeaways

- GW170817 neutron star merger renewed interest in stellar nucleosynthesis calculations.
- r-process abundances have been calculated using ENDF/B-VIII.0 and TENDL-2015 evaluated neutron cross sections and Lodders, Palme and Gail solar system abundances.
- Current work: (n,γ), (n,F), (n,p) and (n,α) ENDF reaction rates fitting, production of REACLIB files and future computations with nuclear astrophysics codes.
- Rates are ready for public release.

Takeaways

- GW170817 neutron star merger renewed interest in stellar nucleosynthesis calculations.
- r-process abundances have been calculated using ENDF/B-VIII.0 and TENDL-2015 evaluated neutron cross sections and Lodders, Palme and Gail solar system abundances.
- Current work: (n,γ), (n,F), (n,p) and (n,α) ENDF reaction rates fitting, production of REACLIB files and future computations with nuclear astrophysics codes.
- Rates are ready for public release.

Takeaways

- GW170817 neutron star merger renewed interest in stellar nucleosynthesis calculations.
- r-process abundances have been calculated using ENDF/B-VIII.0 and TENDL-2015 evaluated neutron cross sections and Lodders, Palme and Gail solar system abundances.
- Current work: (n,γ), (n,F), (n,p) and (n,α) ENDF reaction rates fitting, production of REACLIB files and future computations with nuclear astrophysics codes.
- Rates are ready for public release.

Stellar Enhancement Factors (SEF)

- SEF calculations rely on nuclear structure data
- Multiple calculations
 produce different results
- No experimental verifications
- It is better to apply then separately

The presently-discussed astrophysical reaction rates are based on the ground state (g.s.) cross sections. Stellar Enhancement Factors (SEF) could affect astrophysical reaction rate values in plasma environment. The factor f is defined as the ratio of the stellar rate R^* relative to the ground state rate $R_{q.s.}$ measured in laboratory [45]

$$=\frac{R^{*}}{R_{g.s.}}=\frac{R^{*}}{R_{lab}}.$$
(5)

These factors originate from stellar reaction cross sections σ^* that could be estimated as a sum of the cross sections σ_x for the excited states x with excitation energy E_x and spin J_x , weighted with the Boltzmann excitation probability [41]

$$\sigma^* = \frac{\sum_x (2J_x + 1)\sigma^x e^{\frac{-E_x}{kT}}}{\sum_x (2J_x + 1)e^{\frac{-E_x}{kT}}}.$$

(6)

