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Overview 

• Contents
– CASL VERA overview

• VERA & MPACT

– MPACT library generation procedure
• AMPX MG & MPACT 51-group library generation 

• Subgroup method and subgroup data

– PWR Benchmarks
• Hot Zero Power Benchmark Results

• ITC Benchmark Results

• Hot Full Power Benchmark Results

– Epithermal Upscattering Consideration
• Reactivity Bias

– ENDF/B-VII.1 vs. VIII.0
• Burnup Calculation

– Conclusion & Discussion
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CASL and VERA

• CASL :: Consortium for the Advanced Simulation of Light Water Reactors 

• VERA :: Virtual Environment for Reactor Application
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VERA Multiphysics Coupling

MPACT

Advanced pin-resolved 3-D whole-core 
neutron transport in 51 energy groups 
and >5M unique cross section regions

CTF

Subchannel thermal-hydraulics with 
transient two-fluid, three-field (i.e., liquid 
film, liquid drops, and vapor) solutions in 
14,000 coolant channels with crossflow

ORIGEN

Isotopic depletion and decay in 
>2M regions tracking 263 

isotopes

WB1C11 End-of-Cycle Pin 

Exposure Distribution

WB1C11 Beginning-of-Cycle 

Pin Power Distribution

WB1C11 Middle-of-Cycle Coolant 

Temperature Distribution
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CASL Neutronics Simulators 

• Neutronics simulators
▪ MPACT : Deterministic 1D (NEM or SPN)/2D (MOC) 3D CMFD Framework

▪ SHIFT : Continuous energy Monte Carlo

• MPACT
▪ Development

- U. of Michigan & Oak Ridge National Laboratory

▪ Methodology
▪ Neutron flux solver

- 3D CMFD framework with 2D radial MOC & 1D axial NEM or SPN

- Transport corrected P0 and High order scattering

▪ Resonance self-shielding method :: Bondarenko approach

- Subgroup method for intra pin non-uniform temperature profile

- Embedded Self-Shielding Method (ESSM) and/or Quasi 1D (under development)

▪ Depletion

- Internal module with Matrix exponential method (510 burnup chain)

- ORIGEN-API with ORIGEN depletion libraries (2237 and 255 burnup chains)

▪ T/H feedback

- Internal T/H & COBRA-TF



66

AMPX/SCALE Procedure I

• Pointwise XS data generation
– Doppler Broadening / Probability Table Data

• Multigroup XS data generation
– Flux weighting

– Weighting function

– Conventional
• Maxwellian : thermal

• 1/E :  slowing down

• Fission spectrum :  fast

– Practical spectra
• Pointwise typical PWR fuel pin

• SCALE-CENTRM

– Self-shielded data
• Narrow resonance approximation

– Scattering matrix
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AMPX/SCALE Procedure II

• Improvement of Resonance data
– Intermediate resonance parameter

• LAMBDA

– Homogeneous models
• H-1 + Target isotope

• Homogeneous slowing down 

– Heterogeneous models
• Heterogeneous slowing down

• ESSM to obtain background XS

• Important nuclides

– Introduce within-group correction 
• Adjusting scattering matrices

• Homogeneous & heterogeneous



88

• Development of the 51-group library 
– Group structure

• 51-group

• Resonance: 10-31

– Key characteristics
• ENDF/B-VII.0, VII.1 and VIII.0

• Pointwise PWR weighting function

• NLC transport cross section for 1H

• Within-group correction factor

• Resonance data
– Intermediate resonance parameters

– Heterogeneous models

• Important nuclides
– Homogeneous models

• > A=40
– Narrow resonance

• Subgroup data: 51 nuclides

• Resonance upscattering data for 238U

• Transient data

The MPACT 51-Group Library
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Subgroup Method

• Subgroup data generation
– Real data method

• Given subgroup levels ? obtain width (or weights)

– Physical method 
• Resonance self-shielded XS table 

• Given subgroup levels ? obtain width (or weights)

• Non-linear least square fitting

• Subgroup method
– Background XS for each subgroup level

• Fixed source transport equation: MOC 
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Hot Zero Power Benchmark Results (Old)

• Critical boron concentration at HZP (Old): ENDF/B-VII.1
− Watts Bar unit I (left), TMI unit I (right)

• Lower reactivity 

• No epithermal upscattering
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Isothermal Temperature Coefficients (Old)

• Hot Zero Power ITC: : ENDF/B-VII.1
− Watt Bar I (left top), TMI 1 (left bottom), Krsko/Davis/Watt Bar II/Votgle I 

More negative: similar trend with HFP causing low reactivity at HFP  

No epithermal upscattering

Plant Cycle
ITC Difference 

[pcm/F]

Krsko

1 -0.13

2 -2.18

3 -2.08

Davis-Besse 15 -0.29

Watts Bar 2 1 -0.80

Votgle 1

9 -0.87

10 -0.35

11 -0.85

12 -1.29

13 -0.61
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Hot Full Power Benchmark Results (Old)

• PWR plant simulation: ENDF/B-VII.1
− Watt Bar unit I (left), TMI unit I (right): no epithermal upscattering

− Low reactivity error sources 
• ENDF/B nuclear data

• Fuel temperature estimation: however, ITC indicates more suspect for data

• Other sources 
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Plants & Fuel Types Analyzed (New) 

• Westinghouse’s simulation 
− Gary Mangham, “VERA industry validation by Westinghouse”

− CASL IC/SC meeting on 10/15-17

− No epithermal upscattering with ENDF/B-VII.1

• Eleven plants (27 cycles) 
− Includes seven initial cycles

• Core and Fuel types
− Availability and reliability of measured data

− Measured - Predicted

Parameter Selection 

Core size (# of assemblies) 2-loop (121), 3-loop (157), 4-loop (193), AP1000
®

 (157) 

Fuel Lattice Size (N x N) 14, 15, 16, 17 (small diameter), 17 (large diameter) 

Rod Diameter (inch) 0.360, 0.374, 0.422 

Enrichment (w/o U235) 0.71 – 4.95 

Burnable Absorber IFBA(ZrB2), WABA, Gadolinia, Pyrex 

Cycle Energy (GWD/MTU) 9 - 25 

RCCA Material Ag-In-Cd, hafnium, tungsten 

 
AP1000® is a trademark or registered trademark of Westinghouse Electric Company LLC, its Affiliates 

and/or its Subsidiaries in the United States of America and may be registered in other countries 

throughout the world. All rights reserved. Unauthorized use is strictly prohibited.
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Hot Zero Power Benchmark Results (New)

• Critical boron concentration at HZP: ENDF/B-VII.1
− Measured – Predicted for 27 

• Mean = -6 ppm 

• S.D. = 17 ppm

Plant Mean (ppm)
Number of 

Measurements

Minimum 

Difference 

(ppm)

Maximum 

Difference 

(ppm)

A -17 3 -27 -9

B -15 4 -29 10

C -12 4 -37 2

D -7 3 -44 12

E 7 2 -5 18

F 1 3 -7 13

G -10 4 -24 5

H 13 1 13 13

I -6 1 -6 -6

J 14 1 14 14

K 14 1 14 14

Combined -6 27 -44 18

Standard Deviation (ppm) 17
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Isothermal Temperature Coefficients (New)

Plant Mean (pcm/°F)
Number of 

Measurements

Minimum 

Difference 

(pcm/°F)

Maximum 

Difference 

(pcm/°F)

A 0.3 3 -0.1 0.6

B -0.6 4 -0.9 0.1

C 0.5 4 -0.7 1.3

D 0.7 3 0.3 1.0

E 0.4 1 0.4 0.4

F 0.7 3 0.6 0.9

G 0.7 4 0.4 1.1

H 0.3 1 0.3 0.3

I 0.5 1 0.5 0.5

J 0.2 1 0.2 0.2

K -0.1 1 -0.1 -0.1

Combined 0.3 26 -0.9 1.3

Standard Deviation (pcm/°F) 0.6

• ITC at HZP: ENDF/B-VII.1
− Measured – Predicted for 26 

• Mean = +0.3 pcm/F 

• S.D. = 0.6 pcm/F
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Hot Full Power Benchmark Results (New)

• Critical Boron vs. burnup: ENDF/B-VII.1
− 21 measurement 

− Measured – Predicted

• Beginning of cycle
− Measured – Predicted  

• Mean = -14 ppm

• S.D. = 21 ppm

• End of cycle
− Measured – Predicted for 26 

• Mean = 27 ppm

• S.D. = 21 ppm

Plant Cycle Near-BOC M-P (ppm) Near-EOC M-P (ppm)

18 -27 2

19 -22 1

1 12 34

2 11 32

3 -14 34

4 -25 25

21 -11 21

22 -3 21

23 0 4

1 -72 2

2 41 26

3 -19 26

25 -19 59

26 -16 59

28 -30 61

29 -20 63

30 -10 51

24 6 29

25 -13 -13

26 -36 17

27 -22 21

-14 27

21 21

A

Mean (ppm)

SD (ppm)

G

B

D

F

C

E
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Epithermal Upscattering

• Epithermal upscattering
− Thermal motion of heavy target nuclei: theoretically correct 

− Significant impact on eigenvalue (150~200 pcm lower for HFP)

− Monte Carlo codes: Doppler Broadening Rejection Correction (DBRC)
• Non-default options: KENO, Serpent, MC21, (MCNP not yet)

− VERA MPACT MG library
• Options: only for U-238 (dominant for PWR)
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ENDF/B-VII.1 vs. ENDF/B-VIII.0 

▪ Depletion 
− VERA Depletion Benchmark Problems 

• PWR single pins and assemblies 

• SERPENT2

− ENDF/B-VIII.0 reactivities are much lower 
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ENDF/B-VII.1 vs. ENDF/B-VIII.0 

▪ Bias Source 
− Snapshot burnup calculations 

− Fission product yields and decay data: VIII.0 XS + VII.1 FPY & decay
• Minor impact on reactivity
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ENDF/B-VII.1 vs. ENDF/B-VIII.0 

▪ Bias Source 
− Depleted atomic number densities: U-235 & Pu-241 

− U-235 absorption reaction rate comparison
• 0.01~1 eV → lower
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ENDF/B-VII.1 vs. ENDF/B-VIII.0 

▪ Bias Source 
− Depleted atomic number densities: U-235 & Pu-241 

− U-235 absorption reaction rate comparison
• 0.01~1 eV → lower
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Discussion & Conclusion

• ENDF/B-VII.1  
– Overall good for the PWR HZP & HFP core reactivity

• ITC is also good, but slightly more negative

• BOC is more positive reactivity, but EOC is more negative reactivity

– Reactivity as a function of burnup
• Lower at high burnup

• CASMO-5 is using JEFF-3 data for Pu’s

– Epithermal upscattering would result in more negative reactivity
• 150-200 pcm more negative 

• Theoretically better, but can not be used 

• ENDF/B-VIII.0
– Significant reactivity bias for depletion 

• ~500 pcm lower at 50 MWD/kgU compared to ENDF/B-VII.1

• Much bigger thermal absorption reaction rates for U-235 and other Pu’s

– ENDF/B-VIII.0 + epithermal upscattering
• >500 pcm bias may be bigger than the covariance based uncertainty

• Cannot be used for the PWR simulation 


